2023年至2028年鹰架技术市场预测
市场调查报告书
商品编码
1410090

2023年至2028年鹰架技术市场预测

Scaffold Technology Market - Forecasts from 2023 to 2028

出版日期: | 出版商: Knowledge Sourcing Intelligence | 英文 152 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

全球脚手架技术市场预计在预测期内复合年增长率为 13.57%。

支架技术特别应用于组织工程、再生医学和药物研发。在组织工程领域,支架是三维结构,为细胞发育提供机械支撑和合适的环境。它代表了组织再生和修復的潜在解决方案。这些支架由多种材料製成,模仿天然存在的细胞外基质,并为细胞附着和生长提供表面。支架技术用于药物开发,产生分子框架,可以对其进行修改以测试各种化合物,从而加快发现新药的过程。

脚手架技术市场成长驱动因素

支架技术市场的主要成长动力是对生物和转化研究中使用的 3D 细胞模型的需求不断增长。由于药物开发过程中的困难,支架技术市场随着 3D 细胞培养的兴起而不断扩大。病毒学和流行病学研究、试管内模型系统的建构以及寻找有效的抗感染疗法都在大量利用组织工程来推动支架技术市场的成长。

在 3D 细胞培养中越来越多地使用支架技术

支架常用于 3D 细胞培养。支架是多孔的,允许氧气、营养物质和废物的移动。因此,细胞在黏合到支架之前能够在支架网周围增殖和迁移。成熟细胞在相互作用的同时生长,最终转变为与原始组织相连的结构。因此,支架在3D细胞培养中的广泛应用预计将推动支架技术市场的成长。

鹰架技术的进步

支架的技术突破激发了再生医学和组织工程的革命性进步。 3D 列印和生物列印的结合改变了支架的创建,可以精确控制细胞和结构的放置。这些进步是脚手架技术市场的关键成长动力。溶剂浇铸、溶液喷射纺丝、颗粒浸出、自组装、气体发泡、纤维网、光刻等是鹰架技术涉及的一些製程。

扩大支架技术在癌症治疗的应用

几种 FDA 批准的生物相容性聚合物已被开发出来,用于製造各种用于治疗癌症復发的3D立体支架,这一直是支架技术市场成长的主要驱动力。分析了聚合物选择的各种品质,包括肿瘤微环境、转移、化疗和免疫疗法药物类型、高表面积、高孔隙率和可调的机械性能。此外,3D支架在癌症免疫治疗中越来越受到关注,进一步加速了支架技术市场的成长。

奈米纤维支架预计将占据主要市场占有率

由于奈米纤维支架在组织工程和再生应用中的使用不断增加,其用途正在扩大。例如,世界各地的科学家正在专注于使用奈米纤维支架来创建神经组织。用作细胞外基质的奈米结构是使用静电纺丝等技术创建的。静电纺丝具有易于使用、价格实惠和高度弹性等多种优点,可加速支架技术市场的成长。

政府不断采取的倡议预计将提振市场

由于政府的各种倡议,脚手架技术市场预计将成长。例如,2023年6月,印度药品监管总局批准了由哺乳动物器官製成的组织工程支架,这是一种D级生物医学设备,可以快速、经济地治疗皮肤病变,且疤痕最小。这在我的家乡是第一次允许。科学技术部 (DST) 和 Sree Chila Trinal 医学科技研究所合作满足建立中央药品标准控制组织的所有法律要求。

北美脚手架技术市场稳定成长预测

北美脚手架技术市场预计将稳定成长。这是由于对干细胞和再生医学的研究增加、扩大这些技术应用的资金增加以及医疗保健系统的建立所推动的。研究人员还改进了 3D 微支架技术,以重新编程神经干细胞并支持神经元之间的连接。这些网络没有註射单一细胞,而是在小鼠中显示出更高的大脑存活率。此外,干细胞生物学家和生医材料专家最近在国家医疗图像和生物工程研究所的支持下合作进行了一项研究。

主要市场参与者的成长专注于产品创新

许多公司正在创建用于组织再生的新型 3D 生物列印客製化支架。例如,3D Systems与联合治疗公司于2022年6月共同开发了尖端的3D列印器官技术。此外,奈米纤维支架因其高表面积与体积比以及模仿天然细胞外基质纤维结构的能力而受到欢迎。此外,2022 年 11 月,Gelomics 和 Rousselot 宣布建立联合品牌合作伙伴关係,使用 Gelomics 的 LunaGel 3D 组织培养系统和 Rousselot Biomedical 的 X-Pure GelMA(甲基丙烯酰明胶)细胞外基质。

市场开拓的主要进展

2023 年 6 月,美国卫生研究院 (NIH) 向 RevBio, Inc. 授予 200 万美元津贴,用于开发创新的牙科黏合骨支架产品。 2023年4月,Systemic Bio在美国德克萨斯州建立了一个新实验室,用于製造水凝胶支架并进行晶载技术的研发,以改善药物研发发现和开发。 2022年8月,Conmed宣布收购生物感应支架供应商Biorez,以扩大其用于运动医学的软组织癒合产品组合。

目录

第一章简介

  • 市场概况
  • 市场定义
  • 调查范围
  • 市场区隔
  • 货币
  • 先决条件
  • 基准年和预测年时间表

第二章调查方法

  • 调查资料
  • 先决条件

第三章执行摘要

  • 研究亮点

第四章市场动态

  • 市场驱动因素
  • 市场抑制因素
  • 波特五力分析
  • 产业价值链分析

第五章鹰架技术市场:依类型

  • 介绍
  • 水凝胶
  • 聚合物支架
  • 精细图案表面微孔板
  • 奈米纤维支架

第六章鹰架技术市场:依疾病分类

  • 介绍
  • 整形外科、肌肉骨骼系统、脊柱
  • 癌症
  • 皮肤和体被
  • 牙科
  • 心臟病学和血管学
  • 神经病学
  • 泌尿系统
  • 消化内科、妇科
  • 其他的

第七章鹰架技术市场:依应用分类

  • 介绍
  • 干细胞治疗、再生医学、组织工程
  • 药物研发
  • 其他的

第八章鹰架技术市场:依最终用途

  • 介绍
  • 生物技术和製药组织
  • 研究和实验室
  • 医院和诊断中心
  • 其他的

第九章鹰架技术市场:按地区

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 南美洲
    • 巴西
    • 阿根廷
    • 其他的
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 西班牙
    • 其他的
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 以色列
    • 其他的
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 韩国
    • 印尼
    • 泰国
    • 其他的

第十章竞争环境及分析

  • 主要企业及策略分析
  • 新兴企业和市场盈利
  • 合併、收购、协议和合作
  • 供应商竞争力矩阵

第十一章 公司简介

  • Thermo Fisher Scientific, Inc.
  • Merck KGaA
  • REPROCELL Inc.
  • 3D Biotek LLC
  • Becton, Dickinson, and Company
  • Medtronic
  • Matricel GmbH
  • Akron Biotech
  • Avacta Life Sciences Limited.
  • Vericel Corporation
简介目录
Product Code: KSI061615761

The global scaffold technology market is estimated to grow at a CAGR of 13.57% during the forecast period.

Scaffold technology is used especially in tissue engineering, regenerative medicine, and drug discovery. Scaffolds are three-dimensional constructs that give mechanical support and a favourable environment for cell development in the field of tissue engineering. They present potential solutions for tissue regeneration and repair. Made of a variety of materials, these scaffolds imitate the extracellular matrix found in nature, providing a surface on which cells may cling and multiply. Scaffold technology is used in drug development to generate molecular frameworks that may be altered to produce a variety of compounds for testing, which expedites the process of finding new drugs.

Growth drivers for the scaffold technology market

Major growth drivers for the scaffold technology market are the increased need for 3D cellular models for use in biological research and translational studies. The scaffold technology market is expanding as the 3D cell culture is rising due to difficulties in the drug development process. The study of virology and epidemiology, the creation of in vitro model systems, and the search for effective anti-infective therapies all make substantial use of tissue engineering which fuels the scaffold technology market growth.

Rising utilization of scaffold technology in 3D cell culture

For 3D cell culture, scaffolds are significantly used. Scaffolds enable the movement of oxygen, nutrients, and waste because of their porosity. Cells can therefore multiply and move around the scaffold web before adhering to it. The maturing cells interact with one another as they grow and eventually transform into structures that are connected to the tissues from which they originally came. This growing application of scaffolding in 3D cell culture is expected to fuel the scaffold technology market growth.

Advancements in scaffold technology

Technological breakthroughs in scaffolding have influenced revolutionary advances in regenerative medicine and tissue engineering. The creation of scaffolds has been transformed by the combination of 3D printing with bioprinting, which allows for exact control over the arrangement of cells and structure. These advancements are major growth drivers for the scaffold technology market. Solvent casting, solution blow spinning, particle leaching, self-assembly, gas foaming, fiber mesh, and lithography are some of the processes included in scaffold technology.

Increasing utilization of scaffold technology in the treatment of cancer

Several biocompatible polymers that have received FDA approval have been established to create a variety of 3D scaffolds to treat cancer recurrence, which is a major driver for the scaffold technology market growth. For choosing a polymer, the type of tumour microenvironment, metastasis, chemo medicines, and immunotherapeutics are analyzed for various qualities such as high surface volume, high porosity, and tuneable mechanical properties. Moreover, 3D scaffolds are of interest for cancer immunotherapy and are further upsurging the scaffold technology market growth.

Nano-fiber scaffold is predicted to hold a significant market share

The use of nano-fiber scaffolds is expanding due to their growing use in tissue engineering and regeneration applications. For instance, scientists around the globe are focusing on research related to nanofiber scaffold usage in the creation of nerve tissue. Nano-sized structures that can serve as an extracellular matrix for cellular transformation are made using techniques like electrospinning. Electrospinning provides several benefits such as simplicity of use, affordability, and high flexibility, which can accelerate the scaffold technology market growth.

Rising government initiatives are predicted to fuel the market

The scaffold technology market is anticipated to grow due to various government initiatives. For instance, in June 2023, the Indian Drugs Controller gave their permission to the first locally created tissue engineering scaffold made from mammalian organs, a Class D biomedical device that may quickly and affordably treat skin lesions with little scarring. The Department of Science and Technology (DST) and Sree Chira Triunal Institute for Medical Sciences and Technology, collaborated to meet all the legal requirements to form the Central Drugs Standard Control Organization.

North America's scaffold technology market is anticipated to grow at a steady pace

The scaffold technology market is predicted to grow at a steady pace in North America. This can be attributed to a rise in research on stem cells and regenerative medicine, increased funding for expanding the applications of these technologies, and a well-established healthcare system. Furthermore, researchers have also improved 3D micro scaffold technology, which helps reprogrammed neural stem cells and supports connections between neurons. Instead of injecting individual cells, these networks exhibited greater brain survival in mice. Additionally, stem cell biologists and biomaterial specialists collaborated in their recent work supported by the National Institute of Biomedical Imaging and Bioengineering.

Growth in major market players focuses on product innovation

For tissue regeneration, many businesses are creating novel 3D bio-printed customized scaffolds. For instance, 3D Systems and United Therapeutics Corporation collaborated to create cutting-edge 3D-printed organ technology in June 2022. Moreover, nanofiber scaffolds are gaining popularity because of their high surface area-to-volume ratio and capacity to replicate the fibrous structure of the extracellular matrix in nature. Additionally, in November 2022, Gelomics and Rousselot announced a cobranding partnership that used Gelomics' LunaGel 3D Tissue Culture System and Rousselot Biomedical's X-Pure GelMA (gelatin methacryloyl) extracellular matrix.

Market Key Developments

  • In June 2023, The National Institutes of Health (NIH) awarded RevBio, Inc. a USD 2 million grant for the creation of their innovative dental adhesive bone scaffold product.
  • In April 2023, to produce hydrogel scaffolds and conduct research and development for organ-on-a-chip technology to improve drug discovery and development, Systemic Bio constructed a new lab in Texas, the United States.
  • In August 2022, Conmed announced the acquisition of Biorez, a provider of bio-inductive scaffolds, to increase its selection of soft tissue healing products for use in sports medicine.

Segmentation:

By Type

  • Hydrogels
  • Polymeric Scaffolds
  • Micropatterned Surface Microplates
  • Nanofiber Based Scaffolds

By Disease

  • Orthopedics, Musculoskeletal, & Spine
  • Cancer
  • Skin & Integumentary
  • Dental
  • Cardiology & Vascular
  • Neurology
  • Urology
  • GI, Gynecology
  • Others

By Application

  • Stem Cell Therapy, Regenerative Medicine, & Tissue Engineering
  • Drug Discovery
  • Others

By End-User

  • Biotechnology & Pharmaceutical Organizations
  • Research Laboratories & Institutes
  • Hospitals & Diagnostic Centers
  • Others

By Geography

  • North America
  • United States
  • Canada
  • Mexico
  • South America
  • Brazil
  • Argentina
  • Others
  • Europe
  • United Kingdom
  • Germany
  • France
  • Spain
  • Others
  • Middle East and Africa
  • Saudi Arabia
  • UAE
  • Israel
  • Others
  • Asia Pacific
  • Japan
  • China
  • India
  • South Korea
  • Indonesia
  • Thailand
  • Others

TABLE OF CONTENTS

1. INTRODUCTION

  • 1.1. Market Overview
  • 1.2. Market Definition
  • 1.3. Scope of the Study
  • 1.4. Market Segmentation
  • 1.5. Currency
  • 1.6. Assumptions
  • 1.7. Base, and Forecast Years Timeline

2. RESEARCH METHODOLOGY

  • 2.1. Research Data
  • 2.2. Assumptions

3. EXECUTIVE SUMMARY

  • 3.1. Research Highlights

4. MARKET DYNAMICS

  • 4.1. Market Drivers
  • 4.2. Market Restraints
  • 4.3. Porter's Five Force Analysis
    • 4.3.1. Bargaining Power of Suppliers
    • 4.3.2. Bargaining Power of Buyers
    • 4.3.3. Threat of New Entrants
    • 4.3.4. Threat of Substitutes
    • 4.3.5. Competitive Rivalry in the Industry
  • 4.4. Industry Value Chain Analysis

5. SCAFFOLD TECHNOLOGY MARKET, BY TYPE

  • 5.1. Introduction
  • 5.2. Hydrogels
  • 5.3. Polymeric Scaffolds
  • 5.4. Micropatterned Surface Microplates
  • 5.5. Nanofiber Based Scaffolds

6. SCAFFOLD TECHNOLOGY MARKET, BY DISEASE

  • 6.1. Introduction
  • 6.2. Orthopedics, Musculoskeletal, & Spine
  • 6.3. Cancer
  • 6.4. Skin & Integumentary
  • 6.5. Dental
  • 6.6. Cardiology & Vascular
  • 6.7. Neurology
  • 6.8. Urology
  • 6.9. GI, Gynecology
  • 6.10. Others

7. SCAFFOLD TECHNOLOGY MARKET, BY APPLICATION

  • 7.1. Introduction
  • 7.2. Stem Cell Therapy, Regenerative Medicine, & Tissue Engineering
  • 7.3. Drug Discovery
  • 7.4. Others

8. SCAFFOLD TECHNOLOGY MARKET, BY END-USE

  • 8.1. Introduction
  • 8.2. Biotechnology & Pharmaceutical Organizations
  • 8.3. Research Laboratories & Institutes
  • 8.4. Hospitals & Diagnostic Centers
  • 8.5. Others

9. SCAFFOLD TECHNOLOGY MARKET, BY GEOGRAPHY

  • 9.1. Introduction
  • 9.2. North America
    • 9.2.1. United States
    • 9.2.2. Canada
    • 9.2.3. Mexico
  • 9.3. South America
    • 9.3.1. Brazil
    • 9.3.2. Argentina
    • 9.3.3. Others
  • 9.4. Europe
    • 9.4.1. United Kingdom
    • 9.4.2. Germany
    • 9.4.3. France
    • 9.4.4. Spain
    • 9.4.5. Others
  • 9.5. The Middle East and Africa
    • 9.5.1. Saudi Arabia
    • 9.5.2. UAE
    • 9.5.3. Israel
    • 9.5.4. Others
  • 9.6. Asia Pacific
    • 9.6.1. Japan
    • 9.6.2. China
    • 9.6.3. India
    • 9.6.4. South Korea
    • 9.6.5. Indonesia
    • 9.6.6. Thailand
    • 9.6.7. Others

10. COMPETITIVE ENVIRONMENT AND ANALYSIS

  • 10.1. Major Players and Strategy Analysis
  • 10.2. Emerging Players and Market Lucrativeness
  • 10.3. Mergers, Acquisitions, Agreements, and Collaborations
  • 10.4. Vendor Competitiveness Matrix

11. COMPANY PROFILES

  • 11.1. Thermo Fisher Scientific, Inc.
  • 11.2. Merck KGaA
  • 11.3. REPROCELL Inc.
  • 11.4. 3D Biotek LLC
  • 11.5. Becton, Dickinson, and Company
  • 11.6. Medtronic
  • 11.7. Matricel GmbH
  • 11.8. Akron Biotech
  • 11.9. Avacta Life Sciences Limited.
  • 11.10. Vericel Corporation