封面
市场调查报告书
商品编码
1630443

保险分析 -市场占有率分析、产业趋势/统计、成长预测(2025-2030)

Insurance Analytics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 102 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

保险分析市场规模预计到 2025 年为 132.9 亿美元,预计到 2030 年将达到 278 亿美元,预测期内(2025-2030 年)复合年增长率为 15.9%。

保险分析-市场-IMG1

公司可以使用预测分析来识别可疑的索赔、诈欺和行为模式,并提交以进行进一步调查。这提高了索赔、保单和销售流程的效率,并支持合理的业务决策。例如,客户终身价值 (CLV/CLTV) 工具提供有价值的客户见解,可以预测客户行为、态度以及保留或取消保单的可能性。

主要亮点

  • 透过人工智慧和机器学习的集成,这些解决方案变得更加有价值。根据埃森哲的报告,到 2035 年,在金融领域利用人工智慧可以将收益提高 31%。此外,人工智慧也将能够为客户提供量身订製的金融服务,改善客户体验。因此,基于人工智慧的保险分析解决方案可以帮助金融机构节省数十亿美元的成本,增加数十亿美元的收益,并减少诈欺。 Advanced Analytics (AA) 将欧洲、中东和非洲四大公司的营业利润提高了 10-25%。我们预计这种影响将在未来两年内扩大。
  • COVID-19危机后,经济活动的动盪、不确定性和低迷带来的结构性变化对保险业产生了根本性影响。这些变化迫使保险公司重新思考其开展业务以及与客户互动的方式。此外,对增强数位互动以及个人和健康风险管理的需求也推动了对数位和分析解决方案的投资。因此,在整个研究期间预测市场成长。
  • 由于连接性和远端存取的增加,资料可靠性和安全性变得越来越重要。人们非常担心恶意第三方存取个人资料。从历史上看,保险公司并没有在基础设施上投入巨资,因此购买和维护昂贵的安全软体预计会阻碍保险分析市场的成长。
  • 随着保险业竞争的加剧,对分析解决方案的需求日益增长,以维持全球市场的激烈竞争。企业正在采用可扩展且高效的解决方案来管理不断增长的风险、应对灾难并满足监管监控需求,这些是保险分析的关键驱动因素。
  • 此外,随着消费者越来越多地24/7在线寻求公司报价和客製化保险解决方案,工业公司之间的竞争正在兴起。因此,日益激烈的市场竞争正在加速市场主要企业对保险分析的采用。

保险分析市场趋势

不断上升的风险和诈欺正在推动保险分析的采用。

  • 在保险领域,定期识别和管理人为和自然灾害的风险。这些不确定的风险推动了对综合风险管理的需求,该管理将知识、控制和公司日常营运的最佳化结合起来。保险分析解决方案提供了重要的理解,以加强各层面的风险管理。
  • 86% 的保险公司正在建立保险资料分析系统,以根据巨量资料报告提供最准确的预测。资料分析可以在所有产品类别和公司职能中实现前所未有的创造力。例如,汽车保险公司现在不再依赖损失记录等内部资料来源,而是转向行为模式的分析,并将信用局的信用评级纳入其研究中。
  • 虚假保险申请每年造成保险公司数十亿美元的损失。保险公司认为10%到20%的保险申请是诈欺的,只有不到20%的诈欺申请被侦测到。使用预测分析可以侦测诈欺、可疑索赔和行为模式,其中预测分析结合了统计模型以进行有效的诈欺侦测。
  • 用于索赔诈骗侦测的人工智慧非常有用,因为它可以立即註意到模式并即时识别异常和可疑请求。该公司正在利用人工智慧来加快整个申请流程并提供更先进的诈欺检测,而无需增加员工或增加成本。
  • 保险申请付款对于保险公司的营运效率至关重要。许多与申请相关的业务都可以快速处理,并且透过利用资料分析处理和分析庞大资料集的卓越能力,整个申请付款得以简化。

亚太地区将经历最高的成长

  • 由于对客户分析、行为分析、机器学习和演算法开发的需求不断增长,数位基础设施的日益普及推动了亚太地区保险分析市场的发展。例如,在印度,Max Life Insurance 推出了即时分析解决方案,可识别虚假医疗报告并提供客户的相对健康评分。
  • 此外,亚太地区的人口日益都市化,导致了与久坐生活方式相关的所有健康危害。这种情况将鼓励客户投资健康保险计划。因此,保险公司接触都市区新人口存在巨大的机会。资料分析可以帮助您在购买保险之前研究该客户群。
  • 该地区的保险公司正在投资自动化流程,在后端直通式处理,在前端进行通路数位化。例如,Prudential 与 Google Cloud 合作开发资料分析解决方案。此次合作将使亚洲的保障、医疗保健和储蓄解决方案更容易理解和使用。
  • 近年来,大多数亚太市场放鬆了对外资所有权的限制。亚太地区七个新兴市场中有六个允许外国投资者控制并拥有国内保险公司的多数股权。
  • 亚太地区保险公司的法规不断发展。这些监管改进的重点是保单持有人保护、资本保全和保险科技的推广,但不同地区的发展程度有所不同。

保险分析产业概述

保险公司可以使用资料分析来更了解客户行为,并提供客製化解决方案来满足用户的需求。这些分析提供者与多家公司签订合同,提供资讯科技软体和服务。随着企业向数位技术转型,扩张的范围正在扩大。保险分析市场需要变得更有凝聚力。为了因应保险业不断变化的需求,公司正在投资于产品创新。

  • 2023 年8 月- IBM 和FGH Parent, LP(连同其子公司「Fortitude Re」)将使用人工智慧技术和其他技术为保单持有人和保险公司提供一流的客户体验,并宣布达成一项价值4.5亿定序的协议。
  • 2023 年 2 月 - LexisNexis Risk Solutions 帮助美国住宅保险承保人缩小需要根据风险进行额外评估的财产范围,并为具有完整内部、外部和空中结构的财产提供消费者自助研究工具,推出新的综合财产LexisNexis Total Property Understanding资讯解决方案,可撷取资料并提供人工智慧支援的见解,以加快决策速度。

其他好处

  • Excel 格式的市场预测 (ME) 表
  • 3 个月分析师支持

目录

第一章简介

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章市场洞察

  • 市场概况
  • 产业吸引力-波特五力分析
    • 供应商的议价能力
    • 消费者议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争公司之间敌对关係的强度
  • 评估 COVID-19 对产业的影响
  • 市场驱动因素
    • 更多采用先进技术
    • 保险业竞争加剧
  • 市场限制因素
    • 严格的政府法规
    • 隐私和安全问题

第五章市场区隔

  • 按成分
    • 工具
    • 按服务
  • 按业务用途(定性分析)
    • 理赔管理
    • 风险管理
    • 流程优化
    • 客户管理和个人化
  • 依实施类型
    • 本地
  • 按最终用户
    • 保险公司
    • 政府机构
    • 第三方管理人员、仲介和顾问公司
  • 按地区
    • 北美洲
    • 欧洲
    • 亚太地区
    • 其他的

第六章 竞争状况

  • 公司简介
    • IBM Corporation
    • LexisNexis Risk Solutions
    • Hexaware Technologies Limited
    • Guidewire Software Inc.
    • Applied Systems Inc.
    • Microsoft Corporation
    • MicroStrategy Incorporated
    • OpenText Corporation
    • Oracle Corporation
    • Sapiens International Corporation

第七章 供应商市场占有率

第八章 市场机会及未来趋势

简介目录
Product Code: 71514

The Insurance Analytics Market size is estimated at USD 13.29 billion in 2025, and is expected to reach USD 27.80 billion by 2030, at a CAGR of 15.9% during the forecast period (2025-2030).

Insurance Analytics - Market - IMG1

Companies can identify dubious claims, fraudulent activities, and behavioral patterns using predictive analytics submitted for further research. This will improve the efficiency of claims, policy, and sales processes helping in sound business decisions. For instance customer lifetime value (CLV/CLTV) tool provides the client's informative insights that enable forecasting the possibility of customer behavior and attitude, policy maintenance, or a policy surrender.

Key Highlights

  • These solutions are becoming more valuable with AI and machine learning integration. Using AI in the financial sector might boost profitability rates by 31% by 2035, according to a report by Accenture. Additionally, AI will likely make it possible to give tailored financial services to clients, improving the customer experience. As a result, AI-based insurance analytics solutions can help financial organizations cut costs by billions, increase revenues by billions, and decrease fraud. Advanced Analytics (AA) increased the operating profit of the top four performers by 10 to 25 percent in EMEA. They anticipate this impact to grow over the following two years.
  • With the onset of the COVID-19 crisis, structural changes brought on by turbulence, uncertainty, and weak economic activity had essential ramifications for the insurance sector. These changes compelled insurance companies to rethink how they conducted business and interacted with customers. Also, the need for digital interactions and enhanced risk management for personal and health boosted investments in digital and analytics solutions. As a result, market growth was predicted throughout the study period.
  • Data reliability and security are significant due to increased connection and distant accessibility. Concerns about nefarious parties getting access to personal data are very high. Historically, insurance companies have yet to be known to make significant expenditures in infrastructure, so purchasing and maintaining pricey security software will hinder the growth of the Insurance Analytics Market.
  • With the rise in competition in the insurance sector, the need for analytics solutions tends to rise to sustain stiff competition across the global market. Companies are adopting scalable & efficient solutions for managing amplified risk, dealing with catastrophes, and meeting demands of regulatory scrutiny, which are some of the significant factors that propel the adoption of insurance analytics.
  • Furthermore, as consumers are inclined toward getting online quotes & customized insurance solutions 24/7 from different companies, it creates competition among industry firms. Therefore, an increase in competition is accelerating the adoption of insurance analytics among key players in the market.

Insurance Analytics Market Trends

Increasing Risks And Fraudulent Activities Are Boosting the Adoption Of Insurance Analytics.

  • Risks from man-made and natural disasters are regularly identified and managed in the insurance sector. The need for integrated risk management, which combines knowledge, control, and optimization of routine company operations, is high due to this uncertain risk. Insurance analytics solutions provide the crucial understanding to enhance risk management at all levels.
  • 86% of insurance companies are creating insurance data analytics systems to provide the most accurate predictions of big data reports. Data analytics enable unprecedented creativity across all product categories and corporate functions. For instance, instead of depending on internal data sources like loss records, auto insurance started working on behavior-based analytics and incorporating credit ratings from credit bureaus into their study.
  • Due to false claims, insurance firms suffer enormous losses every year. Insurers believe that between 10% to 20% of claims are fraudulent and that less than 20% of fraudulent claims are discovered. It is possible to detect fraudulent activities, suspicious claims, and behavioral patterns using predictive analytics incorporating statistical models for efficient fraud detection.
  • AI for claims fraud detection is quite beneficial since it can immediately notice patterns, allowing them to identify anomalies and suspicious requests in real-time. Businesses are using AI to speed up the entire insurance claims process and gain access to more advanced fraud detection without adding more staff or spending more money.
  • The speed at which claims are settled is crucial to determining how effectively an insurance company runs. Many claim-related tasks are processed quickly, and the entire claim-settlement process is streamlined post-adoption of data analytics' excellent abilities to process and analyze huge datasets.

Asia-Pacific to Witness Highest Growth

  • APAC region's insurance analytics markets are primarily driven by the increased adoption of digital infrastructure due to the growing need for customer and behavioral analytics, machine learning, and algorithm development. For instance, In India, Max Life Insurance launched a real-time analytics solution to identify false medical reports and provide relative health scores for a customer.
  • Furthermore, populations in the Asia-Pacific region are becoming more urbanized, which brings all the health hazards related to a more sedentary lifestyle. This scenario will urge customers to invest in health insurance plans. Thus there is a vast opportunity for insurers to capture this newly added urban crowd, and data analytics can help study this customer base before issuing them any insurance.
  • Insurance companies in the region are investing in automating processes with straight-through processing at the back end and digitally enabling distribution channels on the front end. For instance, Prudential collaborated with Google Cloud for its data analytics solution. Through this partnership, protection, health, and savings solutions will be more straightforward and accessible across Asia.
  • In recent years, most Asia-Pacific markets relaxed their limitations on foreign ownership. Six of seven emerging Asia Pacific markets have permitted foreign investors to control and own a majority interest in domestic insurers.
  • The laws and regulations for insurers in Asia-Pacific are constantly evolving. These regulatory improvements have focused on policyholder protection, capital preservation, and InsurTech promotion despite the varying degrees of development across various regional nations.

Insurance Analytics Industry Overview

Insurance Companies can use data analytics to learn more about client behavior and deliver customized solutions per user needs. These Analytics providers sign contracts with various companies to help them with Information Technology Software and services. As businesses shift to digital technologies, they have a wider scope of expansion. The insurance analytics market needs to be more cohesive. Players tend to invest in innovating their product offerings to cater to the insurance industry's changing demands.

  • August 2023 - IBM and FGH Parent, L.P. (with its subsidiaries, "Fortitude Re") announced business has entered into a USD 450 million deal to change Fortitude Re's life insurance policy servicing operations with the implementation of AI technology and other automation tools developed to deliver a best-in-class customer experience for policyholders and insurers.
  • February 2023 - LexisNexis Risk Solutions has launched LexisNexis Total Property Understanding, a new comprehensive property intelligence solution to help enable U.S. home insurance underwriters to narrow in on properties needing additional evaluation based on risk, capture complete interior, exterior, and aerial data from those properties through a consumer self-guided survey tool, and access AI-enabled insights to fast-track decision making.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET INSIGHTS

  • 4.1 Market Overview
  • 4.2 Industry Attractiveness - Porter's Five Forces Analysis
    • 4.2.1 Bargaining Power of Suppliers
    • 4.2.2 Bargaining Power of Consumers
    • 4.2.3 Threat of New Entrants
    • 4.2.4 Threat of Substitutes
    • 4.2.5 Intensity of Competitive Rivalry
  • 4.3 Assessment of the Impact of COVID-19 on the Industry
  • 4.4 Market Drivers
    • 4.4.1 Increased Adoption of Advanced Technologies
    • 4.4.2 Rise in Competition among the Insurance Sector
  • 4.5 Market Restraints
    • 4.5.1 Stringent Government Regulations
    • 4.5.2 Privacy and Security Concern

5 MARKET SEGMENTATION

  • 5.1 By Component
    • 5.1.1 Tool
    • 5.1.2 Services
  • 5.2 By Business Application (Qualitative Analysis)
    • 5.2.1 Claims Management
    • 5.2.2 Risk Management
    • 5.2.3 Process Optimization
    • 5.2.4 Customer Management and Personalization
  • 5.3 By Deployment Mode
    • 5.3.1 On-premise
    • 5.3.2 Cloud
  • 5.4 By End-User
    • 5.4.1 Insurance Companies
    • 5.4.2 Government Agencies
    • 5.4.3 Third-party Administrators, Brokers, and Consultancies
  • 5.5 By Geography
    • 5.5.1 North America
    • 5.5.2 Europe
    • 5.5.3 Asia-Pacific
    • 5.5.4 Rest of the World

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 IBM Corporation
    • 6.1.2 LexisNexis Risk Solutions
    • 6.1.3 Hexaware Technologies Limited
    • 6.1.4 Guidewire Software Inc.
    • 6.1.5 Applied Systems Inc.
    • 6.1.6 Microsoft Corporation
    • 6.1.7 MicroStrategy Incorporated
    • 6.1.8 OpenText Corporation
    • 6.1.9 Oracle Corporation
    • 6.1.10 Sapiens International Corporation

7 VENDOR MARKET SHARE

8 MARKET OPPORTUNITIES AND FUTURE TRENDS