封面
市场调查报告书
商品编码
1844719

风力发电机复合材料:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

Wind Turbine Composite Materials - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 120 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

风力发电机复合材料市场规模预计在 2025 年为 134.5 亿美元,预计到 2030 年将达到 182.2 亿美元,预测期内(2025-2030 年)的复合年增长率为 6.26%。

风力涡轮机复合材料-市场-IMG1

长度超过100公尺的叶片的广泛应用,以及更轻的玻璃纤维、碳纤维和混合纤维架构,正在推动每台涡轮机的材料含量不断提高,并鼓励供应商扩大亚太和欧洲地区的产能。英国的差价合约 (CfD) 预算以及中国2024年新增装置容量117吉瓦的目标等政策奖励,确保了多年的订单前景,并加速了整个风力发电机复合材料市场的自动化和垂直整合策略。

全球风力发电机复合材料市场趋势与洞察

陆上和离岸风力涡轮机容量的增加推动了对先进复合材料的需求

目前,全球风力发电机的额定功率通常超过15兆瓦,叶片长度超过115米,结构负荷也随之增加,只有先进的复合材料才能承受。维斯塔斯V236-15兆瓦平台上115.5米长的叶片和西门子歌美飒保密的21.5兆瓦原型机体现了这种规模的扩大,这需要增加每个转子的复合材料用量,同时需要更轻的碳纤维增强翼梁帽来提高刚度和抗疲劳性。英国的目标是到2030年将其海上发电能力提升至50吉瓦,这巩固了其对高性能层压系统(可在高腐蚀性海洋环境中提供25年的设计寿命)的长期支持。

政府脱碳政策加速复合材料的采用

英国12亿美元差价合约融资轮专注于离岸风力发电,中国将在2024年实现创纪录的117吉瓦风电装置容量,等一系列支持性框架确保了数吉瓦的竞标渠道,并降低了新复合材料工厂的投资风险。清洁产业奖励计画旨在奖励低碳供应链,鼓励本地叶片生产和更环保的树脂化学。 《欧洲绿色交易》的2030年可再生能源目标,加上德国80%的清洁电力目标,正在加强风力发电机复合材料的整体需求前景,激励维斯塔斯、艾尔姆风电和中国玻璃纤维巨头扩大产能。碳定价和可再生能源证书进一步提高了计划经济性,确保了对轻质、耐用和可回收复合材料的持续需求。

碳纤维价格波动抑制高端用途

由于对长度超过100公尺的叶片的需求激增,预计到2027年,碳消费量将增加两倍,但产能扩张缓慢导致价格上涨,阻碍了成本敏感型涡轮机的广泛应用。中国市场在2023年吸收了6.9万吨碳纤维,但由于出口限制和地缘政治摩擦扰乱了供应链,市场波动剧烈。因此,原始设备製造商正在寻求玻璃-碳混合架构,并透过在地采购来对冲波动性。在2030年全球风力发电机复合材料产量达到预计的45万吨之前,风力发电机复合材料市场将不得不应对波动的投入成本。

細項分析

由于有利的成本和强劲的供应链,玻璃纤维将在2024年继续占风力发电机复合材料市场71.66%的主导​​份额。然而,由于原始设备製造商追求减重,以使更长的转子能够承受更高的叶尖速度且不会产生过大负荷,碳纤维的复合年增长率将达到7.11%。 LM Wind Power的88.4公尺叶片采用碳纤维/玻璃纤维混合翼梁帽,在不增加成本的情况下减轻了重量。

此外,编织碳纤维的成本比航太级碳纤维低40%,其应用正在推动中型涡轮机市场的采用率上升。天然纤维混纺提供了一个永续的利基市场,棕榈和亚麻混纺纤维既能满足关键的机械指标,又能降低能耗。在预测期内,风力发电机复合材料市场将继续在刚度、疲劳寿命和经济性之间寻求平衡,而混合策略仍然至关重要。

环氧树脂系统凭藉其独特的性能,到2024年将占据34.88%的收入份额,其中聚酯/乙烯基酯和聚氨酯共混物的复合年增长率最高,为7.45%。聚氨酯注射成型製程经验证可缩短10-25%的循环时间,并改善浸润性,是无需大量资本投入即可提高年产量的有力选择。

对可减少30-40%生命週期排放的生物基化学品的需求正在推动配方研发,用于风力涡轮机复合材料的绿色风力发电机市场也在不断扩大,尤其是在欧洲,那里的竞标中已经采用了碳足迹披露。 Baxodur固化剂和降低放热峰的添加剂包将进一步增强环氧树脂的竞争力,使多种树脂类别能够共存到2030年。

风力发电机复合材料报告按纤维类型(玻璃纤维、碳纤维、天然/混合纤维)、树脂类型(环氧树脂、聚酯/乙烯基酯树脂、聚氨酯、热塑性树脂)、技术(真空灌注、预浸料等)、应用(风力叶片、机舱、鼻锥等)和地区(亚太地区、北美、欧洲等)细分。市场预测以美元计算。

区域分析

亚太地区仍将是风力发电机复合材料市场的主导地区,到2024年,该地区将占全球总收入的46.44%,复合年增长率为6.99%。中国预计2024年新增117吉瓦的风力发电机,创历史新高。此外,中国国内木材法规对中国巨石和太平洋保险有利,这将支撑其无与伦比的供应链布局,使其能够在全球范围内出口原材料和成品叶片。

欧洲也紧随其后,采用成熟的技术并制定严格的永续性法规。英国计画在2030年部署50吉瓦的离岸风力发电,德国设定了80%清洁电力的目标,法国则大力推行循环经济,这些倡议正在推动欧洲製造商转向可回收热塑性塑胶和闭模成型。

在北美,联邦税额扣抵和州政府采购相结合,正在扩大大平原陆上风电船队规模,并为沿海风力发电厂提供电力。美国能源局预测,到2027年,复合复合材料需求将成长三倍,这将促使TPI Composites和GE Burnova等公司投资于翼梁帽和根部插件的本地化生产。

其他福利:

  • Excel 格式的市场预测 (ME) 表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场状况

  • 市场驱动因素
    • 陆上和离岸风力涡轮机容量的增加将推动对更轻、更长叶片的需求。
    • 政府的脱碳目标和 CFD竞标加速了风力发电的发展。
    • 节省成本的聚氨酯灌注树脂缩短了週期时间
    • 生物基/可回收热塑性系统为 ESG 融资开启了新的可能性
    • 智慧织物相容复合材料促进叶片数位双胞胎
  • 市场限制
    • 碳纤维价格和供应波动
    • 即将推出的复合材料双酚A和苯乙烯排放限制
    • 新兴枢纽缺乏技术纯熟劳工来注入尖端技术
  • 价值链分析
  • 五力分析
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争程度

第五章市场规模及成长预测

  • 依纤维类型
    • 玻璃纤维
    • 碳纤维
    • 天然/混合纤维
  • 依树脂类型
    • 环氧树脂
    • 聚酯/乙烯基酯
    • 聚氨酯
    • 热塑性树脂
  • 依技术
    • 真空灌注
    • 预浸料
    • 手工积层
    • 缠绕成型
  • 按用途
    • 风刃
    • 引擎室和鼻锥
    • 轮圈、盖板、辅助零件
  • 按地区
    • 亚太地区
      • 中国
      • 印度
      • 日本
      • 韩国
      • ASEAN
      • 其他亚太地区
    • 北美洲
      • 美国
      • 加拿大
      • 墨西哥
    • 欧洲
      • 德国
      • 英国
      • 法国
      • 义大利
      • 西班牙
      • 其他欧洲国家
    • 南美洲
      • 巴西
      • 阿根廷
      • 其他南美
    • 中东和非洲
      • 沙乌地阿拉伯
      • 阿拉伯聯合大公国
      • 南非
      • 埃及
      • 其他中东和非洲地区

第六章 竞争态势

  • 策略倡议
  • 市占率分析
  • 公司简介
    • AVIC Huiteng Windpower
    • BASF
    • China Jushi Co., Ltd.
    • Covestro AG
    • Exel Composites
    • Gurit Holding AG
    • Hexcel Corporation
    • INCA Renewtech
    • Lianyungang Zhongfu Lianzhong Composite Material Group Co., Ltd
    • LM WIND POWER
    • Molded Fiber Glass Companies
    • Owens Corning
    • Reliance Industries Limited
    • SGL Carbon
    • Siemens AG
    • Sinoma Science & Technology Co.,Ltd.
    • Teijin Limited
    • TORAY INDUSTRIES, INC.
    • TPI Composites
    • Vestas
    • Zhongfu Lianzhong Group

第七章 市场机会与未来展望

简介目录
Product Code: 61246

The Wind Turbine Composite Materials Market size is estimated at USD 13.45 billion in 2025, and is expected to reach USD 18.22 billion by 2030, at a CAGR of 6.26% during the forecast period (2025-2030).

Wind Turbine Composite Materials - Market - IMG1

Widespread adoption of blades longer than 100 m, supported by lighter glass-, carbon- and hybrid-fiber architectures, is raising material content per turbine and pushing suppliers to expand capacity in Asia Pacific and Europe. Policy incentives such as the United Kingdom's Contracts for Difference (CfD) budget and China's 117 GW of new 2024 installations assure multi-year order visibility and accelerate automation and vertical integration strategies across the wind turbine composites market.

Global Wind Turbine Composite Materials Market Trends and Insights

Increasing Onshore and Offshore Turbine Capacities Drive Demand for Advanced Composites

Global turbine ratings now routinely exceed 15 MW offshore, pushing blade lengths past 115 m and multiplying structural loads that only advanced composites can withstand. Vestas' 115.5 m-long blades on the V236-15 MW platform and Siemens Gamesa's confidential 21.5 MW prototype exemplify the scale-up that magnifies composite volume per rotor while simultaneously mandating lighter carbon-reinforced spar caps for stiffness and fatigue resistance. The United Kingdom alone aims to raise offshore capacity to as much as 50 GW by 2030, a target that cements long-term pull for high-performance laminate systems able to deliver a 25-year design life in corrosive marine environments.

Government Decarbonization Policies Accelerate Composite Material Adoption

Supportive frameworks, such as the United Kingdom's USD 1.2 billion CfD round dedicated to offshore wind and China's record 117 GW of 2024 wind installations, lock in multi-gigawatt auction pipelines and de-risk investments in new composite plants. Clean-industry bonus mechanisms that reward low-carbon supply chains are encouraging local blade production and greener resin chemistries. The European Green Deal's binding 2030 renewables targets, along with Germany's 80% clean-power ambition, consolidate demand visibility across the wind turbine composites market and motivate capacity expansions from Vestas, LM Wind Power, and Chinese glass-fiber majors. Carbon pricing and renewable energy certificates further boost project economics, ensuring sustained pull for lightweight, durable, and recyclable composites.

Carbon Fiber Price Volatility Constrains Premium Applications

Surging demand for 100 m-plus blades is expected to triple carbon consumption by 2027, yet capacity expansions lag, creating price spikes that discourage wider uptake in cost-sensitive turbines. China's market, which absorbed 69,000 t of carbon fiber in 2023, saw sharp swings as export restrictions and geopolitical frictions disrupted supply chains. OEMs, therefore, pursue hybrid glass-carbon architectures and localized sourcing to hedge volatility. Until additional lines lift global output toward the 450,000 tons predicted for 2030, the wind turbine composites market must navigate erratic input costs.

Other drivers and restraints analyzed in the detailed report include:

  1. Polyurethane Infusion Resins Transform Manufacturing Economics
  2. Bio-based Thermoplastic Systems Enable Circular-Economy Transition
  3. Regulatory Emission Limits Drive Manufacturing-Process Transformation

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

Glass fiber retained a dominant 71.66% share of the wind turbine composites market in 2024, underpinned by favorable cost and robust supply chains. Carbon, however, is growing at 7.11% CAGR as OEMs chase mass reductions that let longer rotors survive higher tip speeds without excess loads. LM Wind Power's hybrid carbon/glass spar caps on its 88.4 m blade validated weight cuts without cost blowouts.

Incremental uptake also stems from textile-based carbon fibers that are 40% cheaper than aerospace grades, unlocking mid-tier turbine segments. Natural-fiber blends offer sustainable niches, with palm or flax hybrids matching key mechanical metrics while lowering embodied energy. Over the forecast horizon, hybridization strategies will remain pivotal as the wind turbine composites market balances stiffness, fatigue life and affordability.

Epoxy systems held 34.88% revenue share in 2024, thanks to well-characterized performance, yet polyester/vinyl-ester and polyurethane blends are tracking the fastest 7.45% CAGR. Proven 10-25% cycle-time savings and improved wet-out make polyurethane infusion the prime candidate for stretching annual output without large capex.

Demand for bio-based chemistries that curb life-cycle emissions by 30-40% will steer formulation research and development, broadening the wind turbine composites market size for greener resins, particularly in Europe, where carbon-footprint disclosures already feature in tenders. Baxxodur curing agents and additive packages that cut exotherm peaks further enhance epoxy competitiveness, ensuring multiple resin classes co-exist through 2030.

The Wind Turbine Composite Materials Report is Segmented by Fiber Type (Glass Fiber, Carbon Fiber, Natural/Hybrid Fibers), Resin Type (Epoxy, Polyester/Vinyl-Ester, Polyurethane, Thermoplastic Resins), Technology (Vacuum Infusion, Prepreg, and More), Application (Wind Blades, Nacelles and Nose Cones, and More), and Geography (Asia-Pacific, North America, Europe, and More). The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

Asia Pacific, at 46.44% of 2024 revenue, remains the anchor region for the wind turbine composites market and posts a leading 6.99% CAGR. China's record 117 GW of 2024 additions, supported by local-content rules favoring China Jushi and CPIC, underpin an unrivaled supply-chain footprint that exports both raw fabrics and finished blades worldwide.

Europe follows with mature technology adoption and rigorous sustainability regulations. The United Kingdom's ambition to reach up to 50 GW of offshore wind by 2030, Germany's 80% clean-power target, and France's circular-economy mandates push European makers toward recyclable thermoplastics and closed molding.

North America couples federal tax credits with state procurement to expand onshore fleets in the Great Plains and repower coastal wind zones. The U.S. Department of Energy forecasts composite demand tripling by 2027, propelling investments from TPI Composites and GE Vernova that localize spar-cap and root-insert production.

  1. AVIC Huiteng Windpower
  2. BASF
  3. China Jushi Co., Ltd.
  4. Covestro AG
  5. Exel Composites
  6. Gurit Holding AG
  7. Hexcel Corporation
  8. INCA Renewtech
  9. Lianyungang Zhongfu Lianzhong Composite Material Group Co., Ltd
  10. LM WIND POWER
  11. Molded Fiber Glass Companies
  12. Owens Corning
  13. Reliance Industries Limited
  14. SGL Carbon
  15. Siemens AG
  16. Sinoma Science & Technology Co.,Ltd.
  17. Teijin Limited
  18. TORAY INDUSTRIES, INC.
  19. TPI Composites
  20. Vestas
  21. Zhongfu Lianzhong Group

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 Introduction

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 Research Methodology

3 Executive Summary

4 Market Landscape

  • 4.1 Market Drivers
    • 4.1.1 Increasing Onshore and Offshore Turbine Capacities Drive the Need for Lighter, Longer Blades.
    • 4.1.2 Government Decarbonization Goals and CFD Auctions are Speeding Up Wind Energy Development.
    • 4.1.3 Cost-Saving Polyurethane Infusion Resins Shorten Cycle Time
    • 4.1.4 Bio-Based/Recyclable Thermoplastic Systems Unlock ESG Finance
    • 4.1.5 Composites Compatible with Smart Fabrics Facilitate Digital Twinning of Blades.
  • 4.2 Market Restraints
    • 4.2.1 Carbon-Fiber Price and Supply Volatility
    • 4.2.2 Upcoming BPA and Styrene Emission Limits for Composites
    • 4.2.3 Skilled-Labour Deficit in Advanced Infusion for Emerging Hubs
  • 4.3 Value Chain Analysis
  • 4.4 Porter's Five Forces
    • 4.4.1 Bargaining Power of Suppliers
    • 4.4.2 Bargaining Power of Buyers
    • 4.4.3 Threat of New Entrants
    • 4.4.4 Threat of Substitutes
    • 4.4.5 Degree of Competition

5 Market Size and Growth Forecasts (Value)

  • 5.1 By Fiber Type
    • 5.1.1 Glass Fiber
    • 5.1.2 Carbon Fiber
    • 5.1.3 Natural/Hybrid Fibers
  • 5.2 By Resin Type
    • 5.2.1 Epoxy
    • 5.2.2 Polyester/Vinyl-Ester
    • 5.2.3 Polyurethane
    • 5.2.4 Thermoplastic Resins
  • 5.3 By Technology
    • 5.3.1 Vacuum Infusion
    • 5.3.2 Prepreg
    • 5.3.3 Hand Lay-up
    • 5.3.4 Filament Winding / Pultrusion
  • 5.4 By Application
    • 5.4.1 Wind Blades
    • 5.4.2 Nacelles and Nose Cones
    • 5.4.3 Hubs, Covers and Ancillary Parts
  • 5.5 By Geography
    • 5.5.1 Asia-Pacific
      • 5.5.1.1 China
      • 5.5.1.2 India
      • 5.5.1.3 Japan
      • 5.5.1.4 South Korea
      • 5.5.1.5 ASEAN
      • 5.5.1.6 Rest of Asia-Pacific
    • 5.5.2 North America
      • 5.5.2.1 United States
      • 5.5.2.2 Canada
      • 5.5.2.3 Mexico
    • 5.5.3 Europe
      • 5.5.3.1 Germany
      • 5.5.3.2 United Kingdom
      • 5.5.3.3 France
      • 5.5.3.4 Italy
      • 5.5.3.5 Spain
      • 5.5.3.6 Rest of Europe
    • 5.5.4 South America
      • 5.5.4.1 Brazil
      • 5.5.4.2 Argentina
      • 5.5.4.3 Rest of South America
    • 5.5.5 Middle-East and Africa
      • 5.5.5.1 Saudi Arabia
      • 5.5.5.2 United Arab Emirates
      • 5.5.5.3 South Africa
      • 5.5.5.4 Egypt
      • 5.5.5.5 Rest of Middle-East and Africa

6 Competitive Landscape

  • 6.1 Strategic Moves
  • 6.2 Market Share Analysis
  • 6.3 Company Profiles (includes Global level Overview, Market level overview, Core Segments, Financials as available, Strategic Information, Market Rank/Share for key companies, Products and Services, and Recent Developments)
    • 6.3.1 AVIC Huiteng Windpower
    • 6.3.2 BASF
    • 6.3.3 China Jushi Co., Ltd.
    • 6.3.4 Covestro AG
    • 6.3.5 Exel Composites
    • 6.3.6 Gurit Holding AG
    • 6.3.7 Hexcel Corporation
    • 6.3.8 INCA Renewtech
    • 6.3.9 Lianyungang Zhongfu Lianzhong Composite Material Group Co., Ltd
    • 6.3.10 LM WIND POWER
    • 6.3.11 Molded Fiber Glass Companies
    • 6.3.12 Owens Corning
    • 6.3.13 Reliance Industries Limited
    • 6.3.14 SGL Carbon
    • 6.3.15 Siemens AG
    • 6.3.16 Sinoma Science & Technology Co.,Ltd.
    • 6.3.17 Teijin Limited
    • 6.3.18 TORAY INDUSTRIES, INC.
    • 6.3.19 TPI Composites
    • 6.3.20 Vestas
    • 6.3.21 Zhongfu Lianzhong Group

7 Market Opportunities and Future Outlook

  • 7.1 White-space and Unmet-Need Assessment
  • 7.2 Government net-zero targets are accelerating global wind power installations.