![]() |
市场调查报告书
商品编码
1850237
微波装置:市场占有率分析、产业趋势、统计数据和成长预测(2025-2030 年)Microwave Devices - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030) |
||||||
※ 本网页内容可能与最新版本有所差异。详细情况请与我们联繫。
预计到 2025 年,微波设备市场规模将达到 69.3 亿美元,到 2030 年将达到 88.3 亿美元,复合年增长率为 4.92%。

这一成长反映了日趋成熟且持续的需求,涵盖国防、卫星通讯、5G回程传输以及新兴医疗领域。氮化镓(GaN)功率元件正日益取代传统的砷化镓解决方案,在提高功率密度和效率的同时,也能缩小系统尺寸并降低冷却负荷。正在进行的国防现代化项目,例如目前与美国国防部签订合约的定向能量武器原型,为高功率订单提供了坚实的基准。即使行动装置的销售量有所放缓,E频段和V频段5G固定无线存取的并行部署也将维持商业性发展动能。医用微波消融平台完善了多元化的需求结构,与射频消融相比,它能为医院提供更快捷的手术和更深的病灶穿透深度。
现代军事网路需要抗干扰链路和多频段通用性。美国近期部署模组化VSAT终端,并与L3Harris公司签订了一份价值6000万美元的合同,这表明军事系统正朝着兼具高数据速率和快速部署能力的紧凑型系统发展。氮化镓(GaN)放大器能够实现目前规定的传输等级和频宽,加速了真空管的淘汰。同时,中国对吉瓦级高功率微波(HPM)武器的大力投资,推动了一场技术竞赛,并加速了国防采购进程。
在光纤成本居高不下的地区,固定无线回程传输可提供Gigabit级吞吐量。美国联邦通讯委员会 (FCC) 设立的 90 亿美元「农村地区 5G 基金」旨在满足近期对 E 波段和 V 波段链路的需求。 SpaceX 公司价值 1,970 万美元的 E 波段固体功率放大器订单,验证了高频微波有效载荷的商业性规模应用。
GaN 和 SiC 外延反应器的成本高达数千万美元,这造成了很高的准入门槛:领先的供应商将 15-20% 的收入用于製程优化,这为新参与企业设定了较低的门槛。
至2024年,主动元件将占微波元件市场62%的份额,并在2030年之前以7.57%的复合年增长率晶粒。尺寸、重量和可靠性方面的优势正在加速从真空电子元件向氮化镓(GaN)固体功率放大器的过渡。有源微波装置市场预计在2030年达到53亿美元。整合趋势是将波束成形和增益控制逻辑整合到放大器晶片中,从而实现软体定义无线电平台。真空管产品仍用于高功率雷达,但随着国防项目逐步采用固态模组,其市占率正在下降。
第二层影响也延伸至被动元件领域,随着更多功能整合到晶片上,分离滤波器和耦合器面临价格压力。医疗消融平台倾向于采用毫秒功率调製的主动解决方案,这巩固了该领域的长期成长势头。产品平臺对24V和28V氮化镓元件的需求不断增长,以支援新兴的5G宏无线电架构。
微波装置市场报告按装置类型(主动[固体、真空电子]、被动[滤波器、耦合器等])、频段(L 和 S、C 和 X、其他)、应用(空间和通讯、国防[雷达、电子战、定向能战]、医疗[消融、成像]、其他)和地区进行细分。
北美地区预计到2024年将维持38%的市场份额,这主要得益于联邦政府90亿美元的5G补贴以及强劲的美国国防预算。微波装置市场将继续受益于定向能量武器计画和农村宽频建设。出口授权合规性会带来成本方面的摩擦,但现有主要供应商仍坚持在地采购策略以降低供应中断的影响。
到2030年,亚太地区的复合年增长率将达到7.24%,位居全球之首。中国控制98%的镓矿资源,赋予了国内晶圆厂成本优势,同时也使海外整合商面临价格波动的风险。区域各国政府正在资助兴建300毫米功率半导体晶圆厂,而印度新成立的设计工作室将为射频前端创新提供人才。韩国和日本将提供先进的测试和封装能力,从而强化自足式的价值链。
欧洲在满足国家国防需求的同时,也积极拓展商业通讯。欧盟的政策奖励旨在实现氮化镓(GaN)外延和封装产能的在地化。跨大西洋伙伴关係将欧洲的射频设计送往北美工厂进行试运作,然后将生产线迁回国内,降低地缘政治风险。永续性要求进一步引导网路营运商在新一代5G和未来的6G节点中采用节能的GaN平台。
The microwave devices market reached a value of USD 6.93 billion in 2025 and is forecast to climb to USD 8.83 billion by 2030, reflecting a 4.92% CAGR.

Gains track a mature yet durable demand profile spanning defense, satellite communications, 5G back-haul, and emerging medical therapies. Gallium nitride (GaN) power devices continue to displace legacy gallium arsenide solutions, improving power density and efficiency while trimming system footprint and cooling loads. Ongoing defense modernization programs, highlighted by directed-energy weapon prototypes now on contract with the U.S. Department of Defense, underpin a robust baseline of high-power orders. Parallel roll-outs of 5G fixed-wireless access in the E- and V-bands sustain commercial momentum even as mass-tier handset volumes soften. Medical microwave ablation platforms round out a diversified demand stack, offering hospitals faster procedures and deeper lesion penetration than radiofrequency alternatives.
Modern armed-forces networks require jam-resilient links and multi-band versatility. Recent U.S. Army fielding of modular VSAT terminals, backed by a USD 60 million contract with L3Harris, illustrates the shift toward compact systems that merge high data rates with quick deployment. GaN amplifiers enable the power levels and bandwidth now specified, speeding the retirement of vacuum tubes. Parallel Chinese investment in gigawatt-class high-power microwave (HPM) weapons fuels a technology race that keeps defense procurement pipelines active.
Fixed-wireless backhaul offers gigabit-class throughput where fiber costs remain prohibitive. The FCC's USD 9 billion 5G Fund for Rural America anchors near-term demand for E- and V-band links. Satellites add another pull: a USD 19.7 million order from SpaceX for E-band solid-state power amplifiers affirms commercial scale for high-frequency microwave payloads.
Epitaxial reactors for GaN and SiC run into the tens of millions of dollars, creating high entry barriers. Leading suppliers devote 15-20% of turnover to process optimization, a hurdle few new entrants can clear.
Other drivers and restraints analyzed in the detailed report include:
For complete list of drivers and restraints, kindly check the Table Of Contents.
Active devices accounted for 62% of the microwave devices market in 2024 and advanced at a 7.57% CAGR to 2030. Size, weight, and reliability advantages are accelerating the swap from vacuum electron devices to GaN solid-state power amplifiers. The Microwave devices market size for active devices is on track to reach USD 5.3 billion by 2030. Integration trends fold beam-forming and gain-control logic into the amplifier die, enabling software-defined radio platforms. Vacuum tube products still serve ultra-high-power radar, but cede volume share as defense programs standardize on solid-state modules.
Second-level effects cascade into the passive segment, where discrete filters and couplers face pricing pressure as functions move on-chip. Medical ablation platforms prefer active solutions for millisecond-scale power modulation, reinforcing the segment's long-term growth trajectory. Product pipelines show rising demand for 24 V and 28 V GaN devices that align with emerging 5G macro radio architectures.
The Microwave Devices Market Report is Segmented by Device Type (Active [Solid-State, Vacuum Electron] and Passive [Filters, Couplers, Etc. ]), Frequency Band (L and S, C and X, and More), Application (Space and Communication, Defense [Radar, EW, DEW], , Medical [Ablation, Imaging] and More), and Geography.
North America retained a 38% stake in 2024, anchored by USD 9 billion in federal 5G subsidies and strong U.S. defense budgets. The microwave devices market continues to benefit from directed-energy weapon programs and rural broadband build-outs. Export-license compliance introduces cost friction, but established primes sustain local sourcing strategies that cushion supply disruptions.
Asia Pacific delivers the highest 7.24% CAGR to 2030. China controls 98% of mined gallium, giving domestic fabs cost leverage while exposing foreign integrators to price volatility. Regional governments fund 300 mm power-semiconductor fabs, and India's newly opened design houses add talent depth for RF front-end innovation. South Korea and Japan supply advanced test and packaging capacity, reinforcing a self-contained value chain.
Europe balances sovereign defense needs with commercial telecom expansion. EU policy incentives aim to localize GaN epitaxy and packaging capacity. Cross-Atlantic partnerships send European RF designs to North American fabs for pilot runs, then bring volume back to domestic lines, mitigating geopolitical risk. Sustainability directives further nudge network operators toward energy-efficient GaN platforms in new 5G and future 6G nodes.