封面
市场调查报告书
商品编码
1851215

抗辐射加固电子产品:市场份额分析、行业趋势、统计数据和成长预测(2025-2030 年)

Radiation Hardened Electronics - Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025 - 2030)

出版日期: | 出版商: Mordor Intelligence | 英文 151 Pages | 商品交期: 2-3个工作天内

价格

本网页内容可能与最新版本有所差异。详细情况请与我们联繫。

简介目录

预计到 2025 年,抗辐射电子产品市场规模将达到 18.8 亿美元,到 2030 年将达到 22.7 亿美元,年复合成长率为 3.84%。

抗辐射电子产品市场-IMG1

市场需求仍呈现两极化:一方面是用于深空和战略防御任务的超高可靠性组件,另一方面是用于蓬勃发展的低地球轨道(LEO)卫星群和平流层平台的成本效益型抗辐射加固装置。地缘政治因素,特别是北约的核现代化计画、亚洲核能发电厂建设的重启以及活性化,正在再形成产品蓝图和认证优先级。商业代工厂正与国防主承包商合作,扩展成熟的硅节点,同时整合氮化镓(GaN)和碳化硅(SiC)以用于下一代电源系统。 90奈米以下抗辐射加固製程(RHBP)能力的供应链瓶颈,以及不断变化的出口限制,正推动着人们转向抗辐射加固设计(RHBD)方法,以缩短开发週期并降低成本。

全球抗辐射电子产品市场趋势及洞察

低地球轨道和深空卫星星系的激增

低地球轨道卫星星系正在推动新的性能目标层级:量产卫星采用耐辐射30-50 krad(Si)的组件,而地球静止轨道和深空卫星则采用耐辐射100 krad(Si)的组件。装置供应商目前正在并行开发产品线,例如兼具高整合度和低屏蔽品质的微型氮化镓功率级。同时,利用抗辐射FPGA进行在轨重构,使得操作员无需物理存取即可更新卫星群软体,从而延长星座的使用寿命。月球补给卫星和火星中继卫星的大量订单进一步推动了对深空元件的需求。

北约地区的战略和战术防御电子设备现代化

美国和欧洲国防部正在投资研发可靠的国产微电子产品,以保护关键系统免受高空电磁脉衝(HSEP)的影响。美国国防部2025财政年度预算拨款2,488.4万美元,用于加速研发抗辐射射频及光电原型产品。测试基础设施也在同步升级:海军水面作战中心克莱恩的短脉衝伽马射线设施正在进行一项耗资1亿美元的现代化改造,以支援同步进行的核子现代化计画。

高可靠性成本和长检验週期

开发抗辐射加固型专用积体电路 (ASIC) 的成本是市售同类产品的 5 到 10 倍。战略抗辐射加固电子委员会预测,到 2025 年,单光子发射 (SEE) 测试光束的需求将每年超出 6000 小时,这一缺口导致认证队列不断延长。因此,航太业者正试图简化基于商用现货 (COTS) 的选择流程,以缩短前置作业时间,并在发射时间和在轨寿命风险之间取得平衡。

细分市场分析

2024年,太空领域将占据抗辐射电子产品市场46.3%的份额,满足总电离剂量和单粒子效应抗扰度等规范基准。营运商正从客製化的地球同步轨道(GEO)太空船过渡到蓬勃发展的低地球轨道(LEO)卫星群,他们为了降低成本和加快更新速度,牺牲了部分抗辐射能力,从而催生了混合产品线,这些产品线能够在满足30 krad(Si)设计目标的同时,降低屏蔽品质。美国太空总署(NASA)的阿尔忒弥斯登月计画和商业性太阳系物流,也为能够承受深空辐射带的100 krad(Si)+装置提供了稳定的需求。

预计到2030年,高空无人机/高空平台(HAPS)市场将成长4.2%,从而将航太电子产品的应用范围扩展到近宇宙辐射频谱。设计人员正在利用辐射加固型FPGA实现自适应有效载荷,并使用宽能带隙功率级来满足严格的能量预算要求。随着6G网路回程传输测试从原型阶段过渡到实际运作阶段,该细分领域的抗辐射电子产品市场规模预计将会扩大。

到2024年,积体电路将占据抗辐射电子产品市场31.5%的份额,其中混合讯号ASIC将多个类比前端和电源管理功能整合到单一晶粒上,从而降低电路板的重量。与单粒子效应(SEE)相关的束流时间供应风险正促使晶片厂商同时在两个代工厂流程中对相同的IP模组进行认证,以加强连续性计画。

随着卫星营运商将轨道重配置列为优先事项,现场闸阵列(FPGA)正以4.6%的复合年增长率(CAGR)保持成长。最新的Kintex UltraScale XQRKU060系列产品整合了200万个逻辑单元和一个片上擦除控制器,可有效缓解配置记忆体故障。在抗辐射电子市场,FPGA正在弥合固定功能硅晶片和纯软体故障缓解之间的差距,并从分立逻辑电路手中夺取市场份额。

区域分析

2024年,北美地区占全球销售额的39.8%,这得益于持续的国防预算和NASA的探勘计画。可靠的国内晶圆代工厂和专用光束线设施(例如NSWC Crane)缩短了认证週期,并为众多主承包商的供应链提供了支援。太空商业向月球通讯和小行星探勘任务的多元化发展,将进一步推动该地区的需求。

到2030年,亚太地区将以4.1%的复合年增长率成为成长最快的地区,这主要得益于中国、印度和韩国不断扩大火箭运载能力并试运行新的核子反应炉。各国政府航太机构正与当地大学合作,投资兴建辐射加固型设计中心,以减少对进口零件的依赖。新兴的商业发射服务供应商也正在采用抗辐射加固型FPGA,以支援其灵活的卫星经营模式。

在欧洲,欧空局庞大的任务储备与强大的核能发电厂维修计画相辅相成。诸如NEUROSPACE倡议等神经型态机载处理项目凸显了该地区向超低功耗计算的转型。位于阿联酋和沙乌地阿拉伯的中东航太局正在推进火星探勘和地球观测丛集,这为本地组装和测试创造了独特的机会。南美洲虽然仍在发展中,但巴西和阿根廷的小型卫星计划正受益于对本土航空电子设备的需求。

其他福利:

  • Excel格式的市场预测(ME)表
  • 3个月的分析师支持

目录

第一章 引言

  • 研究假设和市场定义
  • 调查范围

第二章调查方法

第三章执行摘要

第四章 市场情势

  • 市场概览
  • 市场驱动因素
    • 低地球轨道和深空卫星星座的扩散
    • 北约地区的战略和战术防御电子设备现代化
    • 亚洲和中东新建核能发电厂的势头强劲
    • 高空无人机和超音速飞机的电子设备可靠性需求
    • 医疗图像诊断的强制性辐射耐受标准(美国FDA、欧盟MDR)
    • SiC/GaN抗辐射加强型功率元件迅速应用于太空船PPU
  • 市场限制
    • 高可靠性设计成本和较长的认证週期
    • 用于抗辐射加固製程(RHBP)节点的代工厂产能将限制在90奈米。
    • 与商用现成晶片相比的效能权衡(速度、密度)
    • ITAR/出口管制供应链瓶颈
  • 生态系分析
  • 技术展望
  • 波特五力分析
    • 供应商的议价能力
    • 买方的议价能力
    • 新进入者的威胁
    • 替代品的威胁
    • 竞争程度

第五章 市场规模与成长预测

  • 最终用户
    • 宇宙
    • 航太与国防(空军、陆军、海军)
    • 核能发电和燃料循环
    • 医学影像及放射治疗
    • 高空无人机/HAPS平台
    • 工业粒子加速器与实验室
  • 按组件
    • 离散半导体
    • 感测器(光学、成像、环境)
    • 积体电路(ASIC、SoC)
    • 微控制器和微处理器
    • 记忆体(SRAM、MRAM、FRAM、EEPROM)
    • 现场可程式闸阵列(FPGA)
    • 电源管理积体电路
  • 依产品类型
    • 类比和混合讯号
    • 数位逻辑
    • 功率和线性
    • 处理器和控制器
  • 透过製造技术
    • 硬核设计 (RHBD)
    • 硬性购买流程 (RHBP)
    • RAD 硬体软体/韧体缓解
  • 透过半导体材料
    • 碳化硅(SiC)
    • 氮化镓(GaN)
    • 其他(InP、GaAs)
  • 按辐射类型
    • 总电离剂量(TID)
    • 单事件效应(SEE)
    • 位移损伤剂量(DDD)
    • 中子和质子注量
  • 按地区
    • 北美洲
    • 欧洲
    • 亚太地区
    • 南美洲
    • 中东和非洲

第六章 竞争情势

  • 市场集中度
  • 策略性措施(併购、合资、资金筹措、技术蓝图)
  • 市占率分析
  • 公司简介
    • Honeywell International Inc.
    • BAE Systems plc
    • CAES(Cobham Advanced Electronic Solutions)
    • Texas Instruments Inc.
    • STMicroelectronics NV
    • Microchip Technology Inc.
    • Infineon Technologies AG
    • Frontgrade Technologies
    • Teledyne e2v Semiconductors
    • Xilinx(RT Series, AMD)
    • Renesas Electronics Corp.
    • Solid State Devices Inc.
    • Micropac Industries Inc.
    • Everspin Technologies Inc.
    • Vorago Technologies
    • Analog Devices HiRel
    • International Rectifier HiRel(Infineon)
    • Maxwell Technologies(ES-capacitors)
    • 3D Plus
    • GSI Technology, Inc.

第七章 市场机会与未来展望

简介目录
Product Code: 68030

The radiation hardened electronics market size stands at USD 1.88 billion in 2025 and is forecast to climb to USD 2.27 billion by 2030, reflecting a 3.84% CAGR.

Radiation Hardened Electronics - Market - IMG1

Demand continues to bifurcate between ultra-high-reliability parts for deep-space and strategic defense missions and cost-optimized, radiation-tolerant devices for proliferated low-Earth-orbit (LEO) constellations and stratospheric platforms. Geopolitical drivers-most notably NATO nuclear-modernization programs, renewed nuclear-power construction in Asia, and the ramp-up of small-satellite launches-are reshaping product road maps and qualification priorities. Commercial foundries are partnering with defense primes to stretch mature silicon nodes while integrating gallium nitride (GaN) and silicon carbide (SiC) for next-generation power systems. Supply-chain bottlenecks in <=90 nm radiation-hard-by-process (RHBP) capacity, together with evolving export-control regimes, spur a parallel push toward radiation-hard-by-design (RHBD) methodologies that shorten development cycles and lower cost.

Global Radiation Hardened Electronics Market Trends and Insights

Surge in LEO and Deep-Space Satellite Constellations

LEO mega-constellations are driving a new stratification of performance targets: 30-50 krad(Si) tolerant parts for mass-manufactured satellites versus >=100 krad(Si) parts for geostationary and deep-space assets. Device vendors now run parallel product lines, such as miniaturized GaN power stages that blend higher integration with lower shielding mass.Smaller spacecraft footprints intensify the need for size-, weight-, and power-optimized (SWaP) solutions while preserving single-event-effect immunity. Concurrently, on-orbit reconfigurability via radiation-tolerant FPGAs allows operators to refresh mission software without physical access, extending constellation life cycles. Strong backlog for lunar logistics and Mars relay satellites further cements deep-space demand.

Modernisation of Strategic and Tactical Defense Electronics in NATO Region

The United States and European defense ministries are channeling funds into trusted domestic microelectronics to shield critical systems from high-altitude electromagnetic pulse scenarios. The FY 2025 United States DoD budget allocates USD 24.884 million to accelerate radiation-hardened RF and opto-electronic prototypes. Test infrastructure follows suit: Naval Surface Warfare Center Crane's Short Pulse Gamma facility underpins a USD 100 million modernization drive, enabling concurrent nuclear-modernization programs.

High Design-for-Reliability Cost & Long Qualification Cycles

Developing radiation-hardened ASICs costs 5-10 times more than commercial equivalents. The Strategic Radiation-Hardened Electronics Council forecasts SEE test-beam oversubscription of up to 6,000 hours annually by 2025, a gap that stretches qualification queues. Space operators therefore pilot streamlined COTS-based selection processes to cut lead times, balancing life-orbit risk against launch cadence.

Other drivers and restraints analyzed in the detailed report include:

  1. Nuclear-New-Build Momentum in Asia and Middle-East
  2. High-Altitude UAV and Supersonic Aircraft Electronics Resilience Needs
  3. Restricted Foundry Capacity for RHBP Nodes <= 90 nm

For complete list of drivers and restraints, kindly check the Table Of Contents.

Segment Analysis

The space segment accounted for 46.3% of the radiation hardened electronics market in 2024, anchoring specification baselines for total-ionizing-dose and single-event-effect immunity. Operators moving from bespoke GEO spacecraft to proliferated LEO constellations now trade some resilience for lower cost and rapid refresh, catalyzing hybrid product lines that mate 30 krad(Si) design targets with lower shielding mass. NASA's Artemis lunar program and commercial cislunar logistics underpin steady demand for >=100 krad(Si) devices that survive deep-space radiation belts.

High-Altitude UAV/HAPS platforms, forecast to grow at 4.2% to 2030, extend aerospace electronics into a quasi-space radiation spectrum. Designers leverage RHBD FPGAs for adaptive payloads and use wide-band-gap power stages to meet tight energy budgets. The radiation hardened electronics market size for this sub-segment is projected to broaden as 6G network backhaul trials migrate from prototypes to operational fleets.

Integrated circuits held 31.5% radiation hardened electronics market share in 2024, with mixed-signal ASICs consolidating multiple analog front ends and power-management functions onto a single die to trim board-level mass. Supply risks around SEE-capable beam time are prompting chip houses to qualify identical IP blocks simultaneously on two foundry flows, bolstering continuity plans.

Field-programmable gate arrays represent the fastest 4.6% CAGR as satellite operators prize in-orbit reconfiguration. The latest Kintex UltraScale XQRKU060 class blends 2 million logic cells with on-chip scrub controllers that mitigate configuration memory upsets. The radiation hardened electronics market sees FPGAs bridging the gap between fixed-function silicon and software-only fault mitigation, carving share from discrete logic.

The Radiation Hardened Electronics Market Report is Segmented by End-User (Space, and More), Component (Discrete Semiconductors, and More), Product Type (Analog and Mixed-Signal, Digital Logic, and More), Manufacturing Technique (Rad-Hard-By-Design (RHBD), and More), Semiconductor Material (Silicon, and More), Radiation Type (Total Ionizing Dose (TID), and More), Geography. The Market Forecasts are Provided in Terms of Value (USD).

Geography Analysis

North America generated 39.8% of 2024 sales, buoyed by sustained defense budgets and NASA exploration initiatives. Trusted domestic foundries, plus dedicated beam-line capacity at facilities such as NSWC Crane, shorten certification loops and anchor many prime-contractor supply chains. Space commerce diversification into lunar communications and asteroid-prospecting missions should further support regional demand.

Asia Pacific posts the quickest 4.1% CAGR to 2030 as China, India, and South Korea scale rocket fleets and commission new-build nuclear reactors. Government space agencies co-invest with local universities in RHBD design centers to decrease reliance on imported parts. Emerging commercial launch providers likewise adopt radiation-tolerant FPGAs to meet agile-satellite business models.

Europe combines ESA's large mission pipeline with strong nuclear-plant refurbishment schedules. Neuromorphic on-board processing programs such as the NEUROSPACE initiative underscore the region's pivot toward ultra-low-power compute. Middle-East space offices in the UAE and Saudi Arabia pursue Mars probes and Earth-observation clusters, opening niche opportunities for localized assembly and test. South America remains nascent but benefits from Brazilian and Argentine small-satellite projects seeking home-grown avionics.

  1. Honeywell International Inc.
  2. BAE Systems plc
  3. CAES (Cobham Advanced Electronic Solutions)
  4. Texas Instruments Inc.
  5. STMicroelectronics N.V.
  6. Microchip Technology Inc.
  7. Infineon Technologies AG
  8. Frontgrade Technologies
  9. Teledyne e2v Semiconductors
  10. Xilinx (RT Series, AMD)
  11. Renesas Electronics Corp.
  12. Solid State Devices Inc.
  13. Micropac Industries Inc.
  14. Everspin Technologies Inc.
  15. Vorago Technologies
  16. Analog Devices HiRel
  17. International Rectifier HiRel (Infineon)
  18. Maxwell Technologies (ES-capacitors)
  19. 3D Plus
  20. GSI Technology, Inc.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Assumptions and Market Definition
  • 1.2 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET LANDSCAPE

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Surge in LEO and Deep-Space Satellite Constellations
    • 4.2.2 Modernisation of Strategic and Tactical Defence Electronics in NATO Region
    • 4.2.3 Nuclear-New-Build Momentum in Asia and Middle-East
    • 4.2.4 High-Altitude UAV and Supersonic Aircraft Electronics Resilience Needs
    • 4.2.5 Mandated Radiation-Tolerance Standards in Medical Imaging (U-S FDA, EU MDR)
    • 4.2.6 Rapid Adoption of SiC/GaN Rad-Hard Power Devices in Spacecraft PPU
  • 4.3 Market Restraints
    • 4.3.1 High Design-for-Reliability Cost and Long Qualification Cycles
    • 4.3.2 Restricted Foundry capacity for RHBP (Rad-Hard-by-Process) Nodes ? 90 nm
    • 4.3.3 Performance Trade-offs vs COTS Chips (Speed, Density)
    • 4.3.4 ITAR/Export-Control Supply-Chain Bottlenecks
  • 4.4 Industry Ecosystem Analysis
  • 4.5 Technological Outlook
  • 4.6 Porter's Five Forces Analysis
    • 4.6.1 Bargaining Power of Suppliers
    • 4.6.2 Bargaining Power of Buyers
    • 4.6.3 Threat of New Entrants
    • 4.6.4 Threat of Substitute Products
    • 4.6.5 Degree of Competition

5 MARKET SIZE AND GROWTH FORECASTS (VALUES)

  • 5.1 By End-User
    • 5.1.1 Space
    • 5.1.2 Aerospace and Defense (Air, Land, Naval)
    • 5.1.3 Nuclear Power Generation and Fuel Cycle
    • 5.1.4 Medical Imaging and Radiotherapy
    • 5.1.5 High-Altitude UAV/HAPS Platforms
    • 5.1.6 Industrial Particle Accelerators and Research Labs
  • 5.2 By Component
    • 5.2.1 Discrete Semiconductors
    • 5.2.2 Sensors (Optical, Image, Environmental)
    • 5.2.3 Integrated Circuits (ASIC, SoC)
    • 5.2.4 Microcontrollers and Microprocessors
    • 5.2.5 Memory (SRAM, MRAM, FRAM, EEPROM)
    • 5.2.6 Field-Programmable Gate Arrays (FPGA)
    • 5.2.7 Power Management ICs
  • 5.3 By Product Type
    • 5.3.1 Analog and Mixed-Signal
    • 5.3.2 Digital Logic
    • 5.3.3 Power and Linear
    • 5.3.4 Processors and Controllers
  • 5.4 By Manufacturing Technique
    • 5.4.1 Rad-Hard-by-Design (RHBD)
    • 5.4.2 Rad-Hard-by-Process (RHBP)
    • 5.4.3 Rad-Hard-by-Software/Firmware Mitigation
  • 5.5 By Semiconductor Material
    • 5.5.1 Silicon
    • 5.5.2 Silicon Carbide (SiC)
    • 5.5.3 Gallium Nitride (GaN)
    • 5.5.4 Others (InP, GaAs)
  • 5.6 By Radiation Type
    • 5.6.1 Total Ionizing Dose (TID)
    • 5.6.2 Single-Event Effects (SEE)
    • 5.6.3 Displacement Damage Dose (DDD)
    • 5.6.4 Neutron and Proton Fluence
  • 5.7 By Geography
    • 5.7.1 North America
    • 5.7.2 Europe
    • 5.7.3 Asia-Pacific
    • 5.7.4 South America
    • 5.7.5 Middle East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Market Concentration
  • 6.2 Strategic Moves (M&A, JV, Funding, Tech-Roadmaps)
  • 6.3 Market Share Analysis
  • 6.4 Company Profiles (includes Global-Level Overview, Market-Level Overview, Core Segments, Financials, Strategic Information, Market Rank/Share, Products and Services, Recent Developments)
    • 6.4.1 Honeywell International Inc.
    • 6.4.2 BAE Systems plc
    • 6.4.3 CAES (Cobham Advanced Electronic Solutions)
    • 6.4.4 Texas Instruments Inc.
    • 6.4.5 STMicroelectronics N.V.
    • 6.4.6 Microchip Technology Inc.
    • 6.4.7 Infineon Technologies AG
    • 6.4.8 Frontgrade Technologies
    • 6.4.9 Teledyne e2v Semiconductors
    • 6.4.10 Xilinx (RT Series, AMD)
    • 6.4.11 Renesas Electronics Corp.
    • 6.4.12 Solid State Devices Inc.
    • 6.4.13 Micropac Industries Inc.
    • 6.4.14 Everspin Technologies Inc.
    • 6.4.15 Vorago Technologies
    • 6.4.16 Analog Devices HiRel
    • 6.4.17 International Rectifier HiRel (Infineon)
    • 6.4.18 Maxwell Technologies (ES-capacitors)
    • 6.4.19 3D Plus
    • 6.4.20 GSI Technology, Inc.

7 MARKET OPPORTUNITIES AND FUTURE OUTLOOK

  • 7.1 White-Space and Unmet-Need Assessment
  • 7.2 Emerging Opportunities in Modular Small-Sat Avionics
  • 7.3 On-Orbit Servicing and Manufacturing Electronics
  • 7.4 Radiation-Tolerant AI Accelerators for Edge-Space Computing
  • 7.5 Additive Manufacturing of Rad-Hard Packages