高温热电化
市场调查报告书
商品编码
1596028

高温热电化

Electrification of High Temperature Heat: Electric Heating Capacity and Revenue Forecasts for High Temperature Industrial Processes, Global Market 2024-2033

出版日期: | 出版商: Guidehouse Insights | 英文 45 Pages | 订单完成后即时交付

价格
简介目录

大约一半的工业热量需求来自于 400°C 以上温度下运行的热处理。这些过程通常发生在热效率较低的行业,这些行业依赖化石燃料的燃烧来满足大部分热能需求,例如钢铁、基础化学品、水泥/石灰、有色金属和玻璃製造。一般认为大规模实施直接电气化成本太高,对现有基础设施破坏太大,而且技术上困难。因此,高温热脱碳的方法通常集中在基于燃烧的途径,例如碳捕获、氢气和生物质。

然而,越来越多的证据表明,高温过程的电气化将成为工业脱碳的重要驱动力。电气化已成为某些高温製程的预设选择,例如电弧炉二次炼钢。电热技术也常用于小规模生产需要高度控制温度的特殊材料。除了现有应用之外,水泥、化学和其他行业的试点和示范项目表明,从技术上讲,电气化可以满足比目前更大比例的工业用热需求。

直接电气化的好处包括提高製程效率、透过使用低碳电源显着减少与能源相关的排放以及降低维护成本。

该报告研究了高温热电气化,并提供了2024年至2033年高温工业製程电加热产能扩张和设备收入的市场预测。预测按世界地区、产业和技术发展阶段进行分类。

目录

第1章执行摘要

  • 市场介绍
  • 市场预测

第2章 市场问题

  • 促进因素
    • 加强工业电气化政策支持
    • 提高效率
    • 降低维修成本
    • 灵活性的机会
    • 燃油价格波动
  • 抑制因素
    • 高额电费
    • 更换週期长
    • 技术不确定性和流程复杂性
    • 大规模负荷併网困难
  • 政策
  • 技术
    • 电阻加热
    • 红外线加热
    • 介电加热
    • 感应加热
    • 电弧炉
    • 等离子技术
    • 热电池
    • 衝击波加热

第3章产业价值链

  • 部门
    • 水泥/石灰
    • 化学品
    • 玻璃
    • 有色金属
    • 钢铁製造

第4章 市场预测

  • 范围和方法
  • 世界市场概览
  • 区域市场概况
    • 北美
    • 欧洲
    • 亚太地区
    • 拉丁美洲
    • 中东/非洲

第5章结论和建议

第6章 首字母缩写词和缩写词列表

第7章 目录

第8章图表

第9章 研究范围、资讯来源与研究方法、註释

简介目录
Product Code: MF-EHTH-24

Approximately half of industrial heat demand is for thermal processes that operate at temperatures above 400°C. These processes typically occur in hard-to-abate sectors such as iron and steel, basic chemicals, cement and lime, nonferrous metals, and glass production, all of which rely on fossil fuel combustion to supply most of their thermal energy needs. Implementing direct electrification at scale has generally been perceived as too expensive, too disruptive to existing infrastructure, and too technically challenging. Approaches to decarbonizing high temperature heat have therefore often focused on combustion-based pathways such as carbon capture, hydrogen, or biomass.

However, a growing body of evidence suggests that electrification of high temperature processes will be a key driver of industrial decarbonization. Electrification is already the default option for certain high temperature processes such as secondary steelmaking in electric arc furnaces. Electrified heating technologies are also commonly used at smaller scales for manufacturing specialty materials that require a high level of temperature control. Beyond existing applications, pilot and demonstration projects in cement, chemicals, and other sectors have shown that technically, electrification could satisfy a much greater share of industrial heat demand than it does today.

Advantages of direct electrification include improvements to process efficiency, significant reductions in energy-related emissions when using low carbon electricity sources, and lower maintenance costs. This Guidehouse Insights report provides market forecasts for electric heating capacity additions and equipment revenue for high temperature industrial processes from 2024 through 2033. Forecasts are segmented by global region, sector, and technology development stage.

Table of Contents

1. Executive Summary

  • 1.1 Market Introduction
  • 1.2 Market Forecast

2. Market Issues

  • 2.1 Drivers
    • 2.1.1 Increasing Policy Support for Industrial Electrification
    • 2.1.2 Efficiency Benefits
    • 2.1.3 Reduced Maintenance Costs
    • 2.1.4 Opportunities for Flexibilization
    • 2.1.5 Fuel Price Volatility
  • 2.2 Barriers
    • 2.2.1 High Electricity Costs
    • 2.2.2 Long Replacement Cycles
    • 2.2.3 Technology Uncertainty and Process Complexity
    • 2.2.4 Difficulty of Securing a Grid Connection for Large Loads
  • 2.3 Policy
  • 2.4 Technologies
    • 2.4.1 Resistance Heating
    • 2.4.2 Infrared Heating
    • 2.4.3 Dielectric Heating
    • 2.4.4 Induction Heating
    • 2.4.5 Electric Arc Furnaces
    • 2.4.6 Plasma Technologies
    • 2.4.7 Thermal Batteries
    • 2.4.8 Shock Wave Heating

3. Industry Value Chain

  • 3.1 Sectors
    • 3.1.1 Cement and Lime
      • 3.1.1.1 Key Projects
    • 3.1.2 Chemicals
      • 3.1.2.1 Key Projects
    • 3.1.3 Glass
      • 3.1.3.1 Key Projects
    • 3.1.4 Nonferrous Metals
    • 3.1.5 Steelmaking
      • 3.1.5.1 Key Projects

4. Market Forecasts

  • 4.1 Scope and Methodology
  • 4.2 Global Market Overview
  • 4.3 Regional Market Overview
    • 4.3.1 North America
    • 4.3.2 Europe
    • 4.3.3 Asia Pacific
    • 4.3.4 Latin America
    • 4.3.5 Middle East & Africa

5. Conclusions and Recommendations

  • 5.1 Key Takeaways
  • 5.2 Recommendations
    • 5.2.1 Industrial Energy Users
    • 5.2.2 Technology Providers
    • 5.2.3 Policymakers

6. Acronym and Abbreviation List

7. Table of Contents

8. Table of Charts and Figures

9. Scope of Study, Sources and Methodology, Notes