长期间能源储存
市场调查报告书
商品编码
1865162

长期间能源储存

Long-Duration Energy Storage - Emerging LDES Solutions: Global Market Analysis and Forecasts, 2025-2034

出版日期: | 出版商: Guidehouse Research | 英文 39 Pages | 订单完成后即时交付

价格

长时储能 (LDES) 日益被认为是安全、低碳能源系统的重要组成部分。随着间歇性再生能源取代化石燃料发电,LDES 提供了平衡长期供需、维持电网稳定性以及进一步整合再生能源所需的灵活性。短时储能系统主要应对小时波动,而 LDES 则支援多日甚至季节性需求,从而减少对化石燃料调峰电厂的依赖,并在长时间停电期间增强关键基础设施的韧性。这些优势使 LDES 成为实现脱碳和能源安全目标的基础技术。

本报告分析了未来十年全球 LDES 系统市场,重点关注新兴技术及其商业化成熟度。

由于除抽水蓄能以外的许多其他储能方案仍处于部署初期,且在成本、可扩展性和市场设计方面面临独特的挑战,因此本分析重点关注技术成熟度等级 (TRL) 以及政策支援在推动近期应用方面的作用。容量和收入预测是基于 Guidehouse Research 的储能系统追踪器中的专案层级资料。预计到 2034 年,全球累计低密度储能系统 (LDES) 容量(不包括抽水蓄能)将达到 439.4 吉瓦时。

儘管人们对低密度储能系统的兴趣日益浓厚,但其商业可行性仍然受到高昂的前期成本、不确定的收入来源以及不完善的市场结构(无法进行长期灵活性评估)的限制。监管的复杂性、审批延迟和电网整合方面的挑战增加了额外的风险,而缺乏标准化的性能指标则使专案评估更加复杂。许多技术仍在从试点阶段向商业部署阶段过渡,这使得建立可行的商业模式变得困难。市场设计是最大的障碍,如果没有明确的经济讯号和长期激励措施,即使技术需求旺盛,投资也会受到限制。因此,持续的政策支持对于未来十年实现市场成长至关重要。

目录

第1章 摘要整理

第2章 市场问题

  • 简介
  • LDES技术
    • 电化学
    • 环境热能
    • 机器
  • 促进因素
    • 脱碳、再生能源併网和电力系统韧性
    • 政策支持、激励措施与监管机制
    • 市场需求与投资
  • 障碍
    • 成本竞争力与技术竞争
    • 收入来源与市场结构
    • 技术成熟度、可扩展性和部署限制因素

第3章 产业价值链

  • 竞争格局与投资活动
  • 价格设定和经营模式
  • 技术的准备

第4章 市场预测

第5章 结论·建议

  • 三大要点
  • 推荐事项
    • 政策筹划者和法规当局
    • LDES供应商
    • 投资者和金融机关
    • 公共产业及供电网运用者
    • 超大规模资料中心业者以及其他的大规模能源用户

第6章 缩写与简称一览

第7章 目录

第8章 图表

第9章 调查范围,资讯来源,调查手法及註解

Product Code: MF-LDES-25

Long-duration energy storage (LDES) is increasingly recognized as a vital component of a secure, low-carbon energy system. As fossil-based generation gives way to intermittent renewable power, LDES provides the flexibility needed to balance supply and demand over extended periods, maintain grid stability, and enable deeper renewable integration. Unlike short-duration systems, which typically address hourly fluctuations, LDES can support multiday or seasonal needs, reduce reliance on fossil peaker plants, and deliver resilience for critical facilities during prolonged outages. These capabilities position LDES as a foundational technology for achieving decarbonization and energy security goals.

This report analyzes the global market for LDES systems over the next decade with a particular focus on emerging technologies and their readiness for commercialization. Because most non-pumped hydro options are still early in deployment and face distinct challenges around cost, scalability, and market design, the analysis emphasizes technology readiness level (TRL) and the role of policy support in shaping near-term adoption. Capacity and revenue forecasts are based on project-level data from Guidehouse Research's Energy Storage Systems Tracker. Global cumulative LDES capacity (excluding pumped hydro) is expected to reach 439.4 GWh by 2034.

Despite growing interest, commercial viability remains constrained by high upfront costs, uncertain revenue streams, and inadequate market structures that fail to value long-duration flexibility. Regulatory complexity, permitting delays, and grid connection challenges add further risk, while the absence of standardized performance metrics complicates project evaluation. Many technologies are still scaling from pilot to commercial deployment, making it difficult to establish bankable business models. Market design remains the most critical barrier: without clear economic signals and long-term incentives, investment will be limited despite technical need. Sustained policy support will therefore be essential to enable market growth over the next decade.

Table of Contents

1. Executive Summary

2. Market Issues

  • 2.1 Introduction
  • 2.2 LDES Technologies
    • 2.2.1 Electrochemical
      • 2.2.1.1 Flow Batteries
      • 2.2.1.2 Iron-Air Batteries
    • 2.2.2 Thermal
    • 2.2.3 Mechanical
      • 2.2.3.1 Pumped Hydro
      • 2.2.3.2 CAES
      • 2.2.3.3 LAES
  • 2.3 Drivers
    • 2.3.1 Decarbonization, Renewable Integration, and Grid Resilience
    • 2.3.2 Policy Support, Incentives, and Regulatory Mechanisms
    • 2.3.3 Market Demand and Investment
  • 2.4 Barriers
    • 2.4.1 Cost-Competitiveness and Technology Competition
    • 2.4.2 Revenue Generation and Market Structure
    • 2.4.3 Technological Maturity, Scalability, and Deployment Constraints

3. Industry Value Chain

  • 3.1 Competitive Landscape and Investment Activity
  • 3.2 Pricing and Business Models
  • 3.3 Technology Readiness

4. Market Forecasts

  • 4.1 Methodology
  • 4.2 Global Forecasts
    • 4.2.1 Capacity
    • 4.2.2 Revenue

5. Conclusions and Recommendations

  • 5.1 Three Big Takeaways
  • 5.2 Recommendations
    • 5.2.1 Policymakers and Regulators
    • 5.2.2 LDES Providers
    • 5.2.3 Investors and Financial Institutions
    • 5.2.4 Utilities and Grid Operators
    • 5.2.5 Hyperscalers and Other Large Energy Users

6. Acronym and Abbreviation List

7. Table of Contents

8. Table of Charts and Figures

9. Scope of Study, Sources, Methodology and Notes

List of Tables

  • Table 2-1. LDES Technology Summary
  • Table 2-2. 2030 Cost Outlook for LDES Technologies Relative to Li-ion Systems

List of Figures

  • Chart 1-1. Annual LDES Capacity Additions by Region, World Markets: 2025-2034
  • Chart 4-1. Annual LDES Capacity Additions by Region, World Markets: 2025-2034
  • Chart 4-2. Cumulative LDES Capacity by Region, World Markets: 2025-2034
  • Chart 4-3. Annual LDES Capacity Additions by Technology, World Markets: 2025-2034
  • Chart 4-4. Cumulative LDES Capacity by Technology, World Markets: 2025-2034
  • Chart 4-5. Annual LDES Revenue by Region, World Markets: 2025-2034
  • Chart 4-6. Annual LDES Revenue by Technology, World Markets: 2025-2034
  • Figure 3-1. Example LDES Developers by TRL and Technology Category