智慧电网开发的ICT所扮演的角色 - 技术,规格,市场
市场调查报告书
商品编码
1167087

智慧电网开发的ICT所扮演的角色 - 技术,规格,市场

ICT Role in Smart Grid Development - Technologies, Standards, Markets

出版日期: | 出版商: PracTel, Inc. | 英文 210 Pages | 商品交期: 最快1-2个工作天内

价格

智慧型能源和智慧电网(SG)的概念,以最佳化能源的生产、供给、使用为目的,家庭和办公室等内部,和从家庭向外部的连接设备,控制网路,智慧电网本身的能源消费。家庭网路和电力网的双向通讯,不仅削减能源消费,也有提高可靠性和永续性的可能性。

本报告提供智慧电网开发的ICT所扮演的角色调查分析,无线、有线的两个技术为对象,各种技术的优点和问题点,传统的技术,新的蜂巢式技术,SG ICT的开发和规格等相关之最新资讯。

目录

第1章 简介

第2章 整体:SG ICT产业的活动

  • 主要的组织 - 功能
  • 结构
    • SG等级
    • ETSI子网架构
  • 必要条件:SG网路
    • 见解:SG ICT等级
  • 产业、用户组的计划
    • ETSI
    • IEC
    • IEEE
    • Global Intelligent Utility Network Coalition
    • Smart Networks Council(SNC)
    • U-SNAP Alliance
    • ESMIG
    • Demand Response and Smart Grid Coalition(DRSG)
    • EPRI(Electrical Power Research Institute)
    • ZigBee and Wi-Fi Alliances
    • NIST
    • OpenHAN
    • Federal Smart Grid Task Force
    • Open Smart Grid Users Group(OSGUG)
    • ITU
    • OpenADR
    • 评论

第3章 SG ICT和智慧电表

  • 功能与结构:SG ICT
  • 目前状态
  • 目前目标
  • 选项
  • 智慧电表
    • 目的
    • 详细内容
    • 功能
    • 零组件
  • 保全
    • AMI Security Task Force
    • NIST Contributions
  • 市场
    • 推动市场要素
    • 市场预测:智慧电表
  • 产业
  • Aclara(软体、系统,BPL)
  • Aeris(无线网路供应商)
  • Connected Energy(软体平台)
  • Carlson Wireless(无线平台)
  • Cisco(IP-based基础设施)
  • Eaton(Cooper Power Systems)
  • GridPoint(网路平台)
  • Honeywell(连接性,SM)
  • Itron(智慧型电表)
  • Nokia(基础设施)
  • Oracle(软体)
  • Landis+Gyr(电表设备)
  • Sensus(资料收集、测量)
  • Siemens(软体,硬体设备)
  • Spinwave(大楼控制,HAN)
  • Tantalus(网路、设备)
  • TransData(无线AMI/AMR仪表)
  • TI
  • Trilliant(智慧型电表)
  • Uplight

第4章 主要规格和技术:SG ICT

  • IEEE
    • IEEE 2030
    • IEEE 1901-2020
    • 802.15.4g - 智慧公共事业网路
    • 感知无线电:IEEE 802.22
  • 3GPP LTE、SG
    • 3GPP
    • LTE的目的
    • LTE的主要功能
    • 优点
    • 市场
    • 产业
      • Bittium
      • Cisco
      • CommAgility
      • Ericsson
      • Fujitsu
      • Huawei
      • Motorola Solutions
      • Nokia
      • Qualcomm
      • Sequans
      • TI
      • u-blox
      • ZTE
    • 智慧电网开发中LTE所扮演的角色
  • 有线ICT - SG
    • IEEE 1901.2

第5章 IoT技术和SG

  • Weightless技术
    • Weightless Alliance
    • 共同的功能
    • Weightless-W
    • 变更点
    • Weightless-N
    • Weightless-P
    • Weightless技术的比较
    • 案例
  • RPMA
    • 主要的功能
    • 扩张
    • 零组件与结构
    • 使用案例
  • LoRa
    • 联盟
    • 技术的结构要素
    • 产业
      • Actility
      • Advantech
      • Cisco
      • Embit
      • LORIOT.io
      • Microchip Technology
      • MultiTech
      • Murata
      • Sagemcom
      • Semtech
      • STMicroelectronics
      • Tektelic
  • SigFox
    • 企业
    • 技术 - 详细内容
    • 涵盖范围
    • 使用案例
    • 产业
      • Adeunis RF
      • Innocomm
      • Microchip
      • On Semiconductor
      • Telit
      • TI
  • G3-PLC混合和SG

第6章 结论

附录I:IEEE 802.15.4g的特征

附录II:规则 - TVWS

附录III:802.22相关专利的调查(2018年~2022年)

附录IV:SigFox相关专利的调查(2018年~2022年)

附录V:LoRa相关专利的调查(2018年~2022年)

The concept behind smart energy and Smart Grid (SG) is controlling energy consumption internally, within the home, office and similar; and externally from the home to outside connected devices, networks, and the smart grid itself - all with the goal of optimizing energy production, distribution, and usage. Bi-directional communication between home networks and the power grid opens up possibilities for improved reliability and sustainability as well as reducing the energy consumption.

This report presents the in-depth analysis of Information and Communications Technologies (ICT) for the Smart Grid.

Both wireless and wireline communications technologies are considered. Designers of SG networks have multiple choices; and the report presents the comparison of various technologies with their benefits and issues.

In addition to "traditional" technologies, such as 802.15.4g and 802.22, the report concentrates on newer cellular technologies, such as LTE for low-powered and low- speed UEs. It also analyzes a group of IoT technologies that support SG connectivity (such as SigFox, LoRa, Weightless and RPMA).

The detailed survey of organizations that are involved in SG ICT development and standardization is also presented together with the survey of the industry. Marketing statistics also have been developed and included in the report.

This report is useful to a wide audience of technical, managerial and sale staff involved in the SG ICT development and implementation.

Table of Contents

1.0. Introduction

  • 1.1. General
    • 1.1.1. Smart Grid Definition
  • 1.2. Issues
  • 1.3. Vision: SG ICT
    • 1.3.1. Neural Grid
  • 1.4. U.S.
    • 1.4.1. Objectives
    • 1.4.2. Statistics
    • 1.4.3. Conceptual Model
    • 1.4.4. Plans and Current Situation
  • 1.5. England
  • 1.6. Italy
  • 1.7. China
  • 1.8. Scope
  • 1.9. Research Methodology
  • 1.10. Target Audience

2.0. General: SG ICT Industry Activities

  • 2.1. Main Organizations - Functionalities
  • 2.2. Structure
    • 2.2.1. SG Layers
      • 2.2.1.1. ETSI Layering
    • 2.2.2. ETSI Subnetworks Architecture
  • 2.3. Requirements: SG Networking
    • 2.3.1. View: SG ICT Layers
  • 2.4. Industry and User Groups Projects
    • 2.4.1. ETSI
      • 2.4.1.1. Major Items
      • 2.4.1.2. M490
      • 2.4.1.3. ETSI Documents
    • 2.4.2. IEC
    • 2.4.3. IEEE
    • 2.4.4. Global Intelligent Utility Network Coalition
    • 2.4.5. Smart Networks Council (SNC)
    • 2.4.6. U-SNAP Alliance
      • 2.4.6.1. Specification and HAN
      • 2.4.6.2. Merge
      • 2.4.6.3. Further Development
    • 2.4.7. ESMIG
    • 2.4.8. Demand Response and Smart Grid Coalition (DRSG)
    • 2.4.9. EPRI (Electrical Power Research Institute)
    • 2.4.10. ZigBee and Wi-Fi Alliances
    • 2.4.11. NIST
    • 2.4.12. OpenHAN
    • 2.4.13. Federal Smart Grid Task Force
    • 2.4.14. Open Smart Grid Users Group (OSGUG)
    • 2.4.15. ITU
    • 2.4.16. OpenADR
    • 2.4.17. Comments

3.0. SG ICT and Smart Meters

  • 3.1. Function and Structure: SG ICT
  • 3.2. Current Status
  • 3.3. Current Objectives
  • 3.4. Choices
  • 3.5. Smart Meters
    • 3.5.1. Objectives
    • 3.5.2. Details
    • 3.5.3. Functions
    • 3.5.4. Components
      • 3.5.4.1. Communications
  • 3.6. Security
    • 3.6.1. AMI Security Task Force
    • 3.6.2. NIST Contributions
  • 3.7. Market
    • 3.7.1. Market Drivers
    • 3.7.2. Market Projections: Smart Meters
  • 3.8. Industry
  • Aclara (Software and Systems, BPL)
  • Aeris (Wireless Network Provider)
  • Connected Energy (Software Platform)
  • Carlson Wireless (Radio Platforms)
  • Cisco (IP-based Infrastructure)
  • Eaton (Cooper Power Systems)
  • GridPoint (Network Platform)
  • Honeywell (Connectivity, SM)
  • Itron (Intelligent Metering)
  • Nokia (Infrastructure)
  • Oracle (Software)
  • Landis+Gyr (Metering Devices)
  • Sensus (Data Collection and Metering)
  • Siemens (Software, Hardware)
  • Spinwave (Building Control, HAN)
  • Tantalus (Networking and Devices)
  • TransData (Wireless AMI/AMR Meter)
  • TI
  • Trilliant (Intelligent Metering)
  • Uplight

4.0. Major Standards and Technologies: SG ICT

  • 4.1. IEEE
    • 4.1.1. IEEE 2030
      • 4.1.1.1. Scope
      • 4.1.1.2. Purpose
    • 4.1.2. IEEE 1901-2020
    • 4.1.3. 802.15.4g-Smart Utility Networks
      • 4.1.3.1. General
      • 4.1.3.2. Purpose
      • 4.1.3.3. Need
      • 4.1.3.4. Value
      • 4.1.3.5. Overview - PHY
      • 4.1.3.6. Regions
        • 4.1.3.6.1. Frequencies Allocations
      • 4.1.3.7. Details
        • 4.1.3.7.1. Requirements: Major Characteristics
        • 4.1.3.7.2. Considerations
        • 4.1.3.7.3. PHY/MAC Modifications
      • 4.1.3.8. Summary
      • 4.1.3.9. Wi-SUN
    • 4.1.4. Cognitive Radio: IEEE 802.22
      • 4.1.4.1. General
      • 4.1.4.2. Group
        • 4.1.4.2.1. IEEE 802.22
          • 4.1.4.2.1.1. 802.22-2011
          • 4.1.4.2.1.2. 802.22-2019
        • 4.1.4.2.2. IEEE 802.22.1
        • 4.1.4.2.3. IEEE 802.22.2-2012
        • 4.1.4.2.4. IEEE 802.22a-2014
        • 4.1.4.2.5. IEEE 802.22b-2015
      • 4.1.4.3. Developments
      • 4.1.4.4. IEEE 802.22 Overview
      • 4.1.4.5. Major Characteristics-802.22
      • 4.1.4.6. IEEE 802.22 Details
        • 4.1.4.6.1. Physical Layer-Major Characteristics
        • 4.1.4.6.2. MAC Layer
      • 4.1.4.7. Cognitive Functions
      • 4.1.4.8. IEEE 802.22-Marketing Considerations
      • 4.1.4.9. Major Applications
      • 4.1.4.10. Summary
      • 4.1.4.11. 802.22 and Smart Grid
      • 4.1.4.12. Usage Models
      • 4.1.4.13. Benefits
  • 4.2. 3GPP LTE and SG
    • 4.2.1. 3GPP
    • 4.2.2. LTE Objectives
    • 4.2.3. Key Features of LTE
      • 4.2.3.1. Evolved Packet Core (EPC)
      • 4.2.3.2. LTE Advanced
    • 4.2.4. Benefits
    • 4.2.5. Market
      • 4.2.5.1. Drivers
      • 4.2.5.2. LTE Market Projections
    • 4.2.6. Industry
      • 4.2.6.1. Trends
      • 4.2.6.2. Vendors
        • Bittium
        • Cisco
        • CommAgility
        • Ericsson
        • Fujitsu
        • Huawei
        • Motorola Solutions
        • Nokia
        • Qualcomm
        • Sequans
        • TI
        • u-blox
        • ZTE
    • 4.2.7. Role of LTE in Smart Grid Development
      • 4.2.7.1. General
      • 4.2.7.2. Examples
        • 4.2.7.2.1. Ericsson
        • 4.2.7.2.2. Cisco
        • 4.2.7.2.3. Nokia and Tantalus
      • 4.2.7.3. Details
        • 4.2.7.3.1. Scalable LTE IoT Platform and SG
        • 4.2.7.3.2. Smart Metering Specifics - LTE
          • 4.2.7.3.2.1. Choices
          • 4.2.7.3.2.2. Reasons
      • 4.2.7.4. Summary
  • 4.3. Wireline ICT - SG
    • 4.3.1. IEEE 1901.2
      • 4.3.1.1. Choices - ITU
        • 4.3.1.1.1. G3 PLC
          • 4.3.1.1.1.1. Maxim-G3 PLC
          • 4.3.1.1.1.2. G3 PLC Alliance
          • 4.3.1.1.1.3. Approval
          • 4.3.1.1.1.4. Details
            • 4.3.1.1.1.4.1. PHY Layer
            • 4.3.1.1.1.4.2. MAC Layer
            • 4.3.1.1.1.4.3. Network and Transport Layers
            • 4.3.1.1.1.4.4. Application Layer
        • 4.3.1.1.2. PRIME
          • 4.3.1.1.2.1. PRIME Alliance
          • 4.3.1.1.2.2. Benefits
          • 4.3.1.1.2.3. Specification
          • 4.3.1.1.2.4. PRIME Industry

5.0. IoT Technologies and SG

  • 5.1. Weightless Technologies
    • 5.1.1. Weightless Alliance
    • 5.1.2. Common Features
      • 5.1.2.1. Protocol Details
    • 5.1.3. Weightless-W
      • 5.1.3.1. White Spaces Communications - Principles
      • 5.1.3.2. Definition
      • 5.1.3.3. Rational
        • 5.1.3.3.1. Ecosystem and Use Cases
        • 5.1.3.3.2. Weightless-W Details
    • 5.1.4. Changes
    • 5.1.5. Weightless-N
      • 5.1.5.1. General
      • 5.1.5.2. Open Standard
      • 5.1.5.3. Nwave
        • 5.1.5.3.1. NWave-Current Position
    • 5.1.6. Weightless-P
      • 5.1.6.1. General
      • 5.1.6.2. Details
    • 5.1.7. Comparison of Weightless Technologies
    • 5.1.8. Example
  • 5.2. RPMA
    • 5.2.1. Major Features
    • 5.2.2. Expansion
    • 5.2.3. Components and Structure
    • 5.2.4. Use Cases
  • 5.3. LoRa
    • 5.3.1. Alliance
      • 5.3.1.1. Open Protocol
    • 5.3.2. Technology Building Blocks
      • 5.3.2.1. Layered Structure
      • 5.3.2.2. Modulation
      • 5.3.2.3. Long Range
      • 5.3.2.4. Applications
      • 5.3.2.5. Network Architecture
      • 5.3.2.6. Classes
      • 5.3.2.7. LoRaWAN
      • 5.3.2.8. Major Characteristics
    • 5.3.3. Industry
      • Actility
      • Advantech
      • Cisco
      • Embit
      • LORIOT.io
      • Microchip Technology
      • MultiTech
      • Murata
      • Sagemcom
      • Semtech
      • STMicroelectronics
      • Tektelic
  • 5.4. SigFox
    • 5.4.1. Company
    • 5.4.2. Technology - Details
      • 5.4.2.1. Uplink
      • 5.4.2.2. Downlink
      • 5.4.2.3. SmartLNB
    • 5.4.3. Coverage
    • 5.4.4. Use Cases
    • 5.4.5. Industry
      • Adeunis RF
      • Innocomm
      • Microchip
      • On Semiconductor
      • Telit
      • TI
  • 5.5. The G3-PLC Hybrid and SG

6.0. Conclusions

Appendix I: IEEE802.15.4g Characteristics

Appendix II: Regulations - TVWS

Appendix III: Survey of 802.22-related Patents (2018-2022)

Appendix IV: Survey of SigFox-related Patents (2018-2022)

Appendix V: Survey of LoRa-related Patents (2018-2022)

List of Figures

  • Figure 1: Smart Grid Networking
  • Figure 2: SG Developmental Stages
  • Figure 3: U.S. SG - NIST Conceptual Model
  • Figure 4: U.S. - Smart Meters Installed (Mil)
  • Figure 5: GB - Number of SM Installed
  • Figure 6: Organizations
  • Figure 7: Smart Grid and ICT
  • Figure 8: "Smart" Support Network
  • Figure 9: Smart Grid - Layered Structure
  • Figure 10: ETSI-SG Layers
  • Figure 11: SG Networks Requirements
  • Figure 12: Layered Hierarchy - SG/ICT Standards
  • Figure 13: ETSI Documents
  • Figure 14: Interoperability Framework
  • Figure 15: SG - ICT Infrastructure
  • Figure 16: Smart Grid Connectivity
  • Figure 17: Estimate: Electrical SM Global Market ($B)
  • Figure 18: Estimate: Electrical SM Global Market (Mil. Units)
  • Figure 19: SG ICT Market Components
  • Figure 20: U.S. - SMs Geography - Penetration (2013-2017)
  • Figure 21: IEEE 2030 Group
  • Figure 22: SUN Place
  • Figure 23: Major Characteristics: IEEE 802.22
  • Figure 24: IEEE 802.22 Network: Usage Scenarios
  • Figure 25: 3GPP Releases
  • Figure 26: Major LTE Characteristics - R.8.0
  • Figure 27: LTE Frequency Bands (original assignment)
  • Figure 28: LTE - IP
  • Figure 29: Release 8 Users Equipment Categories
  • Figure 30: LTE Subscribers (Bil.)
  • Figure 31: Estimate- LTE Equipment Global Sales ($B)
  • Figure 32: "NarrowBand" LTE
  • Figure 33: Rel. 12 Category 1/0 - SG
  • Figure 34: LTE for Low Complexity UE
  • Figure 35: IoT Communications Technologies Compared
  • Figure 36: Global Regulations
  • Figure 37: Rates of Transmission
  • Figure 38: PRIME Benefits
  • Figure 39: Layers - Prime
  • Figure 40: Weightless Protocol Stack
  • Figure 41: Iceni Characteristics
  • Figure 42: Weightless Technologies Comparison
  • Figure 43: RPMA Use Cases
  • Figure 44: LoRa Protocol Architecture
  • Figure 45: LoRa Architecture
  • Figure 46: LoRa Classes
  • Figure 47: Battery Lifetime
  • Figure 48: Regional Differences
  • Figure 49: Uplink Frame Format
  • Figure 50: Downlink Frame Format