封面
市场调查报告书
商品编码
1284207

到 2028 年的空间传感器和执行器市场预测——按平台、产品类型、应用、最终用户和地区进行的全球分析

Space Sensors and Actuators Market Forecasts to 2028 - Global Analysis By Platform, Product Type, Application, End User and Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 175+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC,2022年全球空间传感器和执行器市场规模将达到27亿美元,预计2028年将达到61亿美元,预测期内增长14.7%。预计以 % 的 CAGR 增长。

放置在空间平台(例如卫星或漫游车)上的设备称为空间传感器。 它用于监测条件并收集有关地球和天体的信息。

市场动态:

驱动程序

在新太空项目中使用太阳能 MEMS 技术

为了正确运行和优化卫星,Solar MEMS 利用应用于高精度太阳能传感器的 MEMS(微机电系统)技术。 太阳能传感器有许多地理应用,包括光源跟踪、指向系统、姿态控制、太阳辐射测量、太阳跟踪平台控制器和无人机姿态确定。 用于研究、卫星和光伏等尖端应用的太阳能传感器的设计、製造和商业化是太阳能 MEMS 技术的主要目标。 Solar MEMS 製造了 100 多个飞行模型传感器,并在全球范围内拥有强大的客户群,是纳米卫星和微型卫星太空任务的领先太阳能传感器供应商之一。

约束

辐射危害和腐蚀性气体危害

一旦航天器离开地球大气层,环境就会发生巨大变化,需要电子设备、传感器和执行器对温度和压力的变化做出响应。 受污染的表面可能会导致静电放电。 卫星会因充电和放电而受到伤害。 卫星充电描述了卫星静电势相对于卫星周围低密度等离子体的变化。 电荷的大小取决于卫星的形状和轨道。 根据传感器和执行器的安装位置,可能需要结合冷却设备和绝缘材料。 不断在太空中流动并被□□太阳磁暴放大的质子和宇宙射线构成了瞬态辐射的大部分。 影响传感器的辐射会导致错误的电流在船内流动,破坏控制执行器和传感器的计算机芯片。

市场机会:

在空间应用中扩大静电致动器的采用

静电致动器有时称为线控动力装置,它采用独立装置,完全依靠电力而不是液压系统运行。 这些通常包括伺服电机、液压泵、蓄能器和伺服执行器。 EHA 简化了系统配置,提高了安全性和可靠性,并且有一个独立的泵,无需额外的液压泵和管道。 它还具有内置泵,无需额外的液压泵和液压管。 这项技术最初是为航空工业开发的,但现在被广泛应用于太空等经常使用液压的领域。 EHA(电液静压)执行器是一种双重容错解决方案,可实现高度可靠的转向控制。 EHA 执行器使用齿轮驱动电机,泵的输出直接移动普通液压活塞。

威胁:

用于地面任务的传感器和执行器技术的成熟度

GEO 之外的载人和无人太空探索在技术、政治和程序方面都是一项艰鉅的任务。 该任务提供了一个机会,可以了解更多信息并展示传感器和执行器技术,以应对即将到来的载人火星任务的挑战。 此外,设计和集成复杂设备需要专业知识、经过验证的方法和特定工具包,所有这些都会增加设备的总体成本。 因此,向更现代技术设备的过渡预计会受到产品成本高的阻碍。

COVID-19 的影响:

COVID-19 的爆发对全球经济产生了负面影响。 这一次,航天工业的主要参与者似乎正在解决这个问题。 主要市场进入者正面临艰难时期,包括生产放缓和卫星发射延迟。 然而,供应链中断和生产停工已导致航天工业的二级和三级供应商出现重大收入损失。 结果,冠状病毒的流行使空间传感器和执行器市场陷入困境。

预计传感器行业在预测期内将成为最大的行业

据估计,传感器领域将经历有利可图的增长。 与其他航天器和漫游车应用相比,空间传感器和执行器非常复杂。 对于每个操作,它们都根据特定技术使用。 为了测量辐射对最终用户的影响,空间观测卫星包括基于 MEMS 的执行器、抗辐射传感器、用于成像的电光传感器、用于电池充电的太阳能电池,以及用于检测到达航天器的辐射量的盖革传感器。它有一个柜檯。 对于商业和环境任务,航天器需要确保航天器、火箭、行星际探测器、着陆器和漫游车等应用按预期运行,具有最高的可靠性和尽可能低的成本。传感器是必不可少的。

商业部门预计在预测期内将经历最高的复合年增长率。

在预测期内,商业领域预计将以最快的复合年增长率增长。 新太空工业、卫星运营商和所有者、太空机器人解决方案服务提供商、太空探索公司以及卫星和火箭製造商构成了商业部门的其他部门。 由于太空业务日益私有化,新一代太空公司应运而生。 国家航天局一直与这些私营公司中最繁荣的公司合作并为其提供支持。 新的航天工业及其附属机构承诺通过开发各种空间传感器和执行器技术来降低进入太空的成本。 这将实现更低的风险、更快的商业模式、持续的改进,并最终为所有人创造更丰富的太空经济。

市场份额最高的地区

在预测期内,亚太地区预计将占据最大的市场份额。 中国对工业现代化的政治推动正在创造对智能传感器、无线传感器网络和更好的执行器等智能製造产品的大量需求。 中国工业部门不断增长的需求吸引了国际传感器和执行器技术供应商的兴趣。 高端机床、智能传感器和其他技术在中国行业的需求量非常大。 在印度,包括物联网在内的新传感器技术的使用进展迅速。 印度有机会扩大这些技术的部署并实现规模经济。 印度政府通过创造性的努力促进新技术的使用。

复合年增长率最高的地区:

预计北美在预测期内的复合年增长率最高。 在北美,现代卫星的使用得到了强有力的政治支持。 推动该地区空间传感器和执行器市场扩张的另一个关键因素是,许多顶级空间传感器和执行器开发商都集中在北美,与政府组织就国防相关问题进行互动。已经建立了一项协议,以

主要发展:

2021 年 8 月,运动控制技术市场领导者派克汉尼汾公司宣布收购航空航天和国防领域运动控制技术供应商 Meggitt PLC。

这份报告提供了什么

  • 区域和国家/地区细分市场份额评估
  • 向新进入者提出战略建议
  • 2020、2021、2022、2025 和 2028 年的综合市场数据
  • 市场趋势(驱动因素、制约因素、机会、威胁、挑战、投资机会、建议)
  • 根据市场预测在关键业务领域提出战略建议
  • 竞争格局映射关键共同趋势。
  • 公司简介,包括详细的战略、财务状况和近期发展
  • 映射最新技术进步的供应链趋势

免费定制优惠:

购买此报告的客户将获得以下免费定制选项之一:

  • 公司简介
    • 其他市场参与者的综合概况(最多 3 家公司)
    • 主要参与者的 SWOT 分析(最多 3 家公司)
  • 区域细分
    • 根据客户的要求对主要国家/地区的市场估计/预测/复合年增长率(注意:基于可行性检查)。
  • 竞争基准
    • 根据产品组合、区域影响力和战略联盟对主要参与者进行基准测试

内容

第 1 章执行摘要

第二章前言

  • 概览
  • 利益相关者
  • 调查范围
  • 调查方法
    • 数据挖掘
    • 数据分析
    • 数据验证
    • 研究方法
  • 调查来源
    • 主要研究来源
    • 二级研究来源
    • 假设

第三章市场趋势分析

  • 司机
  • 约束因素
  • 机会
  • 威胁
  • 产品分析
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第 4 章波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第 5 章全球空间传感器和执行器市场:按平台

  • 漫游车/航天器着陆器
  • 卫星
  • 运载火箭
  • 胶囊或货物
  • 星际飞船和探测器
  • 其他平台

第 6 章按产品类型划分的全球空间传感器和执行器市场

  • 执行器
    • 动作类型
      • 旋转执行器
    • 电源使用类型
      • 机械执行器
      • 液压执行器
      • 磁致动器
      • 气动执行器
      • 电动执行器
  • 传感器
    • 扭矩传感器
    • 压力传感器
    • 化学传感器
    • 温度传感器
    • 图像传感器
    • 位置传感器
    • 水平传感器

第 7 章全球空间传感器和执行器市场:按应用

  • 太阳能电池驱动机构
  • 姿态和轨道控制系统
  • 命令和数据处理系统
  • 螺旋桨进给系统
  • 热力系统
  • 火箭发动机
  • 跟踪和命令
  • 地面机动性和导航系统
  • 遥测
  • 发动机气门控制系统
  • 太阳能电池驱动机构
  • 锚点/对接系统
  • 推力矢量控制系统
  • 机械臂或机械手系统
  • 其他应用

第 8 章全球空间传感器和执行器市场:按最终用户分类

  • 政府和国防
  • 商业
  • 其他最终用户

第 9 章。全球空间传感器和执行器市场:按地区

  • 北美
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 意大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳大利亚
    • 新西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲
  • 中东和非洲
    • 沙特阿拉伯
    • 阿拉伯联合酋长国
    • 卡塔尔
    • 南非
    • 其他中东和非洲地区

第10章主要发展

  • 合同、伙伴关係、协作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第11章公司简介

  • Schlumberger Limited
  • Teledyne UK Limited
  • Parker-Hannifin Corporation
  • Texas Instruments Incorporated
  • Bosch Sensortec GmbH
  • SMC Corporation
  • Renesas Electronics Corporation
  • Emerson Electric Co.
  • Pegasus Actuators GmbH
  • TE Connectivity
  • Honeywell International Inc.
  • Northrop Grumman Corporation
  • Bradford Engineering B.V.
  • Siemens
Product Code: SMRC23039

According to Stratistics MRC, the Global Space Sensors and Actuators Market is accounted for $2.7 billion in 2022 and is expected to reach $6.1 billion by 2028 growing at a CAGR of 14.7% during the forecast period. A device put on a space platform, such as a satellite, rover, or other object, is called a space sensor. It is used to gather information and keep an eye on both Earthly and celestial circumstances.

Market Dynamics:

Driver:

Use of solar MEMS technology in new space projects

For proper operation and satellite optimisation, Solar MEMS utilise Micro-Electro-Mechanical Systems (MEMS) technology applied to high-precision solar sensors. Numerous geographical applications for solar sensors exist, including light-source tracking, pointing systems, attitude control, measurements of the sun's radiation, solar tracking platform controllers, drone attitude determination, and many more. The design, creation, and commercialization of sun sensors for cutting-edge uses like research, satellites, or solar power generation are the main goals of solar MEMS technology. With over 100 flight model sensors produced and a firm position with clients across the world, Solar MEMS is one of the primary sun sensor suppliers for nanosat and microsat missions in the space sector.

Restraint:

Hazard posed due to radiation damage and corrosive atmospheres

When a spacecraft exits the earth's atmosphere, the environment changes significantly, requiring electronics, sensors, and actuators to adapt to variations in temperature and pressure. Surfaces that are much polluted might result in electrostatic discharge. Satellites can be harmed by charging and discharging. Satellite charging describes a change in a satellite's electrostatic potential with respect to the low-density plasma around it. The size of the charge depends on the shape and orbit of the satellite. Engineers incorporate either cooling systems or insulators depending on where in space the sensors and actuators are meant to work. Protons and cosmic rays, which are continually streaming across space and are amplified by magnetic storms on the Sun, make up the majority of transient radiation. The impact of radiation on sensors may result in erroneous currents flowing through the craft or potentially the destruction of computer chips that control both actuators and sensors.

Opportunity:

Increasing adoption of electro-hydrostatic actuators in space applications

Electro hydrostatic Actuators, sometimes referred to as power by wire devices, are replacing hydraulic systems with standalone devices that run only on electricity. They often contain servomotors, hydraulic pumps, accumulators, and servo actuators. EHAs simplify system topologies, increase safety and dependability, and remove the need for extra hydraulic pumps and tubing thanks to its built-in pump. Despite being primarily developed for the aircraft industry, this technology has now been used to a number of other fields, including space, where hydraulic power is frequently used. Electro hydrostatic (EHA) actuators offer solutions for two-fault tolerant, exceptionally dependable steering control. In EHA actuation, the motor is driven by gears, and the output of the pump directly moves a typical hydraulic piston.

Threat:

Sensor and actuator technology maturity for surface missions

Releasing manned and unmanned space exploration to locations outside of GEO is a technically challenging, politically challenging, and programmatically challenging endeavour. The mission offers chances to learn more about and showcase sensor and actuator technologies that address the difficulties of upcoming human missions to Mars. Additionally, the designing and integration of complicated devices requires specialised knowledge, a solid methodology, and a specific toolkit, all of which raise the price of the devices as a whole. As a result, it is anticipated that the transfer to more modern technical equipment would be hindered by the high cost of the products.

COVID-19 Impact:

The worldwide economy has been negatively impacted by the COVID-19 outbreak. The major space industry participants appear to be handling the present issue. The key market participants have had difficulties including production slowdowns, postponed satellite launches, and others. However, owing to supply chain disruption and a halt in production, tier 2 and tier 3 suppliers in the space industry saw a significant loss in income. As a result, the market for space sensors and actuators suffered as a result of the corona virus epidemic.

The sensors segment is expected to be the largest during the forecast period

The sensors segment is estimated to have a lucrative growth. Compared to other spacecraft and rover applications, space sensors and actuators are complex. For each operation, they are utilised depending on a certain technology. For measuring the impact of radiation on end users, space observation satellites feature MEMS-based actuators, radiation-hardened sensors, electro-optical sensors for imaging, solar cells to charge the battery, and a Geiger counter to detect the quantity of radiation reaching the spacecraft. For commercial and environmental missions, space sensors are essential in ensuring that spacecraft, launch vehicles, interplanetary probes, and lander or rover applications operate as intended, with the highest level of dependability, and at the lowest feasible cost.

The Commercial segment is expected to have the highest CAGR during the forecast period

The Commercial segment is anticipated to witness the fastest CAGR growth during the forecast period. The NewSpace industry, satellite operators & owners, space robotic solution service providers, space exploration firms, and satellite and launch vehicle manufacturers make up the additional divisions of the commercial segment. A new generation of space enterprises has emerged as a result of the rising privatisation of space operations. National space agencies have consistently worked with and supported the most prosperous of these private businesses. The New Space industry and its affiliated businesses promise to lower the cost of access to space through developments in a variety of space sensor and actuator technologies. This will enable lower-risk, quicker-moving business models that will enable continual enhancements and eventually lead to a more prosperous space economy for all.

Region with highest share:

Asia Pacific is projected to hold the largest market share during the forecast period. A lot of demand for smart manufacturing goods, such as smart sensors, wireless sensor networks, better actuators, etc., is generated by China's political drive for industrial modernisation. The expanding demand from China's industrial sector is attracting the attention of international providers of sensors and actuator technology. High-end machine tools, intelligent sensors, and other technology are in extremely high demand within the Chinese sector. IoT and other new sensor technologies are being used quickly in India. The nation offers the chance to spread out the deployment of these technologies and achieve economies of scale. Through creative efforts, the Indian government is promoting the use of new technology.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period. The use of modern satellites is strongly backed politically in North America. Another important factor driving the expansion of the space sensors and actuators market in the area is the concentration of many top space sensor and actuator developers in North America, where there are established protocols for interacting with governmental organisations on defense-related issues.

Key players in the market:

Some of the key players profiled in the Space Sensors and Actuators Market include Schlumberger Limited, Teledyne UK Limited, Parker-Hannifin Corporation, Texas Instruments Incorporated, Bosch Sensortec GmbH, SMC Corporation, Renesas Electronics Corporation, Emerson Electric Co., Pegasus Actuators GmbH, TE Connectivity, Honeywell International Inc., Northrop Grumman Corporation, Bradford Engineering B.V. and Siemens.

Key Developments:

In August 2021, Parker Hannifin Corporation, a leading market player in motion and control technologies, announced the acquisition of Meggitt PLC, a company operating in aerospace and defense motion and control technologies.

Platforms Covered:

  • Rovers/Spacecraft Landers
  • Satellites
  • Launch Vehicle
  • Capsules Or Cargos
  • Interplanetary Spacecraft & Probes
  • Other Platforms

Product Types Covered:

  • Actuators
  • Sensors

Applications Covered:

  • Solar Array Drive Mechanism
  • Attitude And Orbital Control System
  • Command And Data Handling System
  • Propeller Feed System
  • Thermal System
  • Rocket Motors
  • Tracking And Command
  • Surface Mobility And Navigation System
  • Telemetry
  • Engine Valve Control System
  • Solar Array Drive Mechanism
  • Berthing And Docking System
  • Thrust Vector Control System
  • Robotic Arm or Manipulator System
  • Other Applications

End Users Covered:

  • Government & Defence
  • Commercial
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Application Analysis
  • 3.8 End User Analysis
  • 3.9 Emerging Markets
  • 3.10 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Space Sensors and Actuators Market, By Platform

  • 5.1 Introduction
  • 5.2 Rovers/Spacecraft Landers
  • 5.3 Satellites
  • 5.4 Launch Vehicle
  • 5.5 Capsules Or Cargos
  • 5.6 Interplanetary Spacecraft & Probes
  • 5.7 Other Platforms

6 Global Space Sensors and Actuators Market, By Product Type

  • 6.1 Introduction
  • 6.2 Actuators
    • 6.2.1 Type of Motion
      • 6.2.1.1 Rotary Actuators
      • 6.2.1.2 Linear Actuators
    • 6.2.2 Type of Power Used
      • 6.2.2.1 Mechanical Actuators
      • 6.2.2.2 Hydraulic Actuators
      • 6.2.2.3 Magnetic Actuators
      • 6.2.2.4 Pneumatic Actuators
      • 6.2.2.5 Electrical Actuators
  • 6.3 Sensors
    • 6.3.1 Torque Sensors
    • 6.3.2 Pressure Sensors
    • 6.3.3 Chemical Sensors
    • 6.3.4 Temperature Sensors
    • 6.3.5 Image Sensors
    • 6.3.6 Position Sensors
    • 6.3.7 Level Sensors

7 Global Space Sensors and Actuators Market, By Application

  • 7.1 Introduction
  • 7.2 Solar Array Drive Mechanism
  • 7.3 Attitude And Orbital Control System
  • 7.4 Command And Data Handling System
  • 7.5 Propeller Feed System
  • 7.6 Thermal System
  • 7.7 Rocket Motors
  • 7.8 Tracking And Command
  • 7.7 Surface Mobility And Navigation System
  • 7.10 Telemetry
  • 7.11 Engine Valve Control System
  • 7.12 Solar Array Drive Mechanism
  • 7.13 Berthing And Docking System
  • 7.14 Thrust Vector Control System
  • 7.15 Robotic Arm or Manipulator System
  • 7.16 Other Applications

8 Global Space Sensors and Actuators Market, By End User

  • 8.1 Introduction
  • 8.2 Government & Defence
  • 8.3 Commercial
  • 8.4 Other End Users

9 Global Space Sensors and Actuators Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Schlumberger Limited
  • 11.2 Teledyne UK Limited
  • 11.3 Parker-Hannifin Corporation
  • 11.4 Texas Instruments Incorporated
  • 11.5 Bosch Sensortec GmbH
  • 11.6 SMC Corporation
  • 11.7 Renesas Electronics Corporation
  • 11.8 Emerson Electric Co.
  • 11.9 Pegasus Actuators GmbH
  • 11.10 TE Connectivity
  • 11.11 Honeywell International Inc.
  • 11.12 Northrop Grumman Corporation
  • 11.13 Bradford Engineering B.V.
  • 11.14 Siemens

List of Tables

  • Table 1 Global Space Sensors and Actuators Market Outlook, By Region (2020-2028) ($MN)
  • Table 2 Global Space Sensors and Actuators Market Outlook, By Platform (2020-2028) ($MN)
  • Table 3 Global Space Sensors and Actuators Market Outlook, By Rovers/Spacecraft Landers (2020-2028) ($MN)
  • Table 4 Global Space Sensors and Actuators Market Outlook, By Satellites (2020-2028) ($MN)
  • Table 5 Global Space Sensors and Actuators Market Outlook, By Launch Vehicle (2020-2028) ($MN)
  • Table 6 Global Space Sensors and Actuators Market Outlook, By Capsules Or Cargos (2020-2028) ($MN)
  • Table 7 Global Space Sensors and Actuators Market Outlook, By Interplanetary Spacecraft & Probes (2020-2028) ($MN)
  • Table 8 Global Space Sensors and Actuators Market Outlook, By Other Platforms (2020-2028) ($MN)
  • Table 9 Global Space Sensors and Actuators Market Outlook, By Product Type (2020-2028) ($MN)
  • Table 10 Global Space Sensors and Actuators Market Outlook, By Actuators (2020-2028) ($MN)
  • Table 11 Global Space Sensors and Actuators Market Outlook, By Type of Motion (2020-2028) ($MN)
  • Table 12 Global Space Sensors and Actuators Market Outlook, By Rotary Actuators (2020-2028) ($MN)
  • Table 13 Global Space Sensors and Actuators Market Outlook, By Linear Actuators (2020-2028) ($MN)
  • Table 14 Global Space Sensors and Actuators Market Outlook, By Type of Power Used (2020-2028) ($MN)
  • Table 15 Global Space Sensors and Actuators Market Outlook, By Mechanical Actuators (2020-2028) ($MN)
  • Table 16 Global Space Sensors and Actuators Market Outlook, By Hydraulic Actuators (2020-2028) ($MN)
  • Table 17 Global Space Sensors and Actuators Market Outlook, By Magnetic Actuators (2020-2028) ($MN)
  • Table 18 Global Space Sensors and Actuators Market Outlook, By Pneumatic Actuators (2020-2028) ($MN)
  • Table 19 Global Space Sensors and Actuators Market Outlook, By Electrical Actuators (2020-2028) ($MN)
  • Table 20 Global Space Sensors and Actuators Market Outlook, By Sensors (2020-2028) ($MN)
  • Table 21 Global Space Sensors and Actuators Market Outlook, By Torque Sensors (2020-2028) ($MN)
  • Table 22 Global Space Sensors and Actuators Market Outlook, By Pressure Sensors (2020-2028) ($MN)
  • Table 23 Global Space Sensors and Actuators Market Outlook, By Chemical Sensors (2020-2028) ($MN)
  • Table 24 Global Space Sensors and Actuators Market Outlook, By Temperature Sensors (2020-2028) ($MN)
  • Table 25 Global Space Sensors and Actuators Market Outlook, By Image Sensors (2020-2028) ($MN)
  • Table 26 Global Space Sensors and Actuators Market Outlook, By Position Sensors (2020-2028) ($MN)
  • Table 27 Global Space Sensors and Actuators Market Outlook, By Level Sensors (2020-2028) ($MN)
  • Table 28 Global Space Sensors and Actuators Market Outlook, By Application (2020-2028) ($MN)
  • Table 29 Global Space Sensors and Actuators Market Outlook, By Solar Array Drive Mechanism (2020-2028) ($MN)
  • Table 30 Global Space Sensors and Actuators Market Outlook, By Attitude And Orbital Control System (2020-2028) ($MN)
  • Table 31 Global Space Sensors and Actuators Market Outlook, By Command And Data Handling System (2020-2028) ($MN)
  • Table 32 Global Space Sensors and Actuators Market Outlook, By Propeller Feed System (2020-2028) ($MN)
  • Table 33 Global Space Sensors and Actuators Market Outlook, By Thermal System (2020-2028) ($MN)
  • Table 34 Global Space Sensors and Actuators Market Outlook, By Rocket Motors (2020-2028) ($MN)
  • Table 35 Global Space Sensors and Actuators Market Outlook, By Tracking And Command (2020-2028) ($MN)
  • Table 36 Global Space Sensors and Actuators Market Outlook, By Surface Mobility And Navigation System (2020-2028) ($MN)
  • Table 37 Global Space Sensors and Actuators Market Outlook, By Telemetry (2020-2028) ($MN)
  • Table 38 Global Space Sensors and Actuators Market Outlook, By Engine Valve Control System (2020-2028) ($MN)
  • Table 39 Global Space Sensors and Actuators Market Outlook, By Solar Array Drive Mechanism (2020-2028) ($MN)
  • Table 40 Global Space Sensors and Actuators Market Outlook, By Berthing And Docking System (2020-2028) ($MN)
  • Table 41 Global Space Sensors and Actuators Market Outlook, By Thrust Vector Control System (2020-2028) ($MN)
  • Table 42 Global Space Sensors and Actuators Market Outlook, By Robotic Arm or Manipulator System (2020-2028) ($MN)
  • Table 43 Global Space Sensors and Actuators Market Outlook, By Other Applications (2020-2028) ($MN)
  • Table 44 Global Space Sensors and Actuators Market Outlook, By End User (2020-2028) ($MN)
  • Table 45 Global Space Sensors and Actuators Market Outlook, By Government & Defence (2020-2028) ($MN)
  • Table 46 Global Space Sensors and Actuators Market Outlook, By Commercial (2020-2028) ($MN)
  • Table 47 Global Space Sensors and Actuators Market Outlook, By Other End Users (2020-2028) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.