封面
市场调查报告书
商品编码
1530886

到 2030 年的通讯分析市场预测:按组件、部署、公司规模、应用程式、最终用户和区域进行的全球分析

Telecom Analytics Market Forecasts to 2030 - Global Analysis By Component, Deployment, Enterprise Size, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,2024 年全球通讯分析市场规模将达到 78 亿美元,预计到 2030 年将达到 194 亿美元,预测期内复合年增长率为 16.5%。

通讯分析是指收集、解释和应用来自通讯网路和系统的资料以优化营运和增强服务交付的过程。这涉及使用复杂的分析技术和工具来分析从呼叫日誌、网路效能指标、客户互动等产生的大量资料。通讯分析提取可操作的见解,帮助企业提高网路效率、预测和防止服务中断、了解客户行为以进行有针对性的营销以及优化资源分配。

美国Statista 进行的 2022 年全球消费者调查显示,44% 的受访者使用线上储存檔案和影像,40% 使用线上应用程式建立办公室文件。

用户洞察的需求不断增长

对电信分析中的用户洞察的需求不断增长,反映出通讯业对资料主导决策的意识不断增强。通讯业者正在利用先进的分析来更好地了解用户行为、偏好和趋势。透过分析客户互动、服务使用和网路效能产生的大量资料,提供者可以获得这些见解,从而个性化服务、优化网路资源,并实现改善的客户体验。

资料隐私和安全问题

资料隐私和安全问题限制对有价值的客户资讯的存取并阻碍资料主导的洞察,从而严重影响通讯分析。电讯严重依赖分析大量客户资料来优化服务、预测趋势和改善用户体验。然而,GDPR 和 CCPA 等严格的资料保护条例要求严格的资料处理和存储,以防止外洩和滥用。这种合规性通常涉及复杂的加密方案和资料存取限制,这可能会限制分析的广度并减慢决策流程。

对预测分析的需求不断增长

电讯业对预测分析的需求不断增长,正在改变公司营运和服务客户的方式。预测分析利用资料探勘、机器学习和统计演算法来分析过去的资料并预测未来的事件和行为。在电讯业,这意味着更个人化的客户体验、改进的网路管理和提高的业务效率。透过分析客户行为模式,电信业者可以预测客户流失、调整行销策略并提供有针对性的促销活动。

资料整合复杂性

由于涉及的资料来源数量众多且种类繁多,通讯分析中的资料整合非常复杂。电讯供应商管理多种类型的资料,包括客户互动、网路效能指标、申请资讯和服务使用模式。这些资料来源通常储存在具有不同格式、结构和标准的不同系统中。整合这些资料需要付出巨大的努力来确保一致性、准确性和及时性。然而,由于需要将历史资料与即时输入整合、解决资料品质问题以及维护隐私和安全标准,这项挑战变得更加复杂。

COVID-19 的影响:

COVID-19 大流行加速了数位转型并改变了使用模式,对通讯分析产生了重大影响。随着封锁的蔓延和远端工作成为常态,网路和行动资料消费量激增,迫使电信业者审查其网路容量和服务产品。分析对于管理这种激增至关重要,可以帮助提供者优化网路效能、预测流量高峰并改善客户体验。这场大流行暴露了数位存取方面的差异,并将注意力集中在弥合连接差距上。

硬体部分预计将在预测期内成为最大的部分

由于最尖端科技和高效能组件整合到网路基础设施中,预计硬体部分将在预测期内成为最大的部分。现代通讯分析严重依赖即时资料处理和分析,需要强大的硬体解决方案,能够以低延迟处理大量资料。管理和解释复杂的网路资料流需要强化伺服器、专用处理器和大容量储存系统。这些进步将使通讯业者能够实施先进的分析演算法,以提高网路效能、优化资源分配并改善客户体验。

网路分析领域预计在预测期内复合年增长率最高

网路分析产业预计在预测期内复合年增长率最高。网路分析透过提供对网路效能和客户行为的更深入洞察,正在彻底改变电信分析。此增强功能包括使用进阶资料分析和机器学习来即时监控和优化网路运作。透过分析大量网路资料,电信分析可以识别模式、预测潜在问题并改善决策。此外,它还可以提高网路管理效率、减少停机时间并提高用户服务品质。对于通讯业者而言,网路分析可以实现主动维护、更好的资源分配和有针对性的改进,所有这些都有助于提供卓越的客户体验。

比最大的地区

在预测期内,北美地区占据了最大的市场份额。随着资料消耗的激增以及 5G 和物联网等新技术的日益普及,通讯业者面临着提高全部区域网路效率和效能的压力。网路优化涉及分析大量资料,以改善频宽分配、减少延迟并确保无缝连接。这个过程是由该地区处理更多资料流量、最大限度降低营运成本并提供更好用户体验的需求所驱动的。通讯分析工具对于通讯业者预测网路需求、主动识别和解决潜在问题以及实施全部区域策略升级至关重要。

复合年增长率最高的地区:

预计欧洲地区在预测期内将实现盈利成长。在欧洲电讯业,政府监管透过促进透明度、竞争和创新,显着加强了通讯分析领域。 《一般资料保护规范》(GDPR) 等法规确保通讯业者负责任地处理资料,提高消费者信任度,并鼓励在全部区域更全面的资料收集和分析。欧盟委员会提出了促进竞争的倡议,例如取消漫游费和推动网路基础设施的改进,鼓励通讯业者部署高级分析以保持竞争力并优化其服务。

免费客製化服务:

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球通讯分析市场:按组成部分

  • 软体
  • 硬体
  • 服务
    • 託管服务
    • 专业服务

第六章全球通讯分析市场:依发展划分

  • 本地

第七章 全球通讯分析市场:依公司规模

  • 小型企业
  • 大公司

第八章全球通讯分析市场:依应用分类

  • 服务分析
  • 网路分析
  • 客户分析
  • 销售和行销管理
  • 风险与合规管理
  • 人力资源管理
  • 其他用途

第 9 章 全球通讯分析市场:依最终用户分类

  • 媒体与娱乐
  • 运输/物流
  • 零售/电子商务
  • 政府
  • 媒体与娱乐
  • 其他最终用户

第 10 章 全球通讯分析市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第十一章 主要进展

  • 合约、伙伴关係、协作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章 公司概况

  • SAP SE
  • Accenture Plc
  • Adobe Inc
  • Cisco Systems Inc
  • Huawei Technologies
  • International Business Machines Corporation
  • Microsoft Corporation
  • Oracle Corporation
  • Teradata Corporation
  • Vodafone Group
Product Code: SMRC26998

According to Stratistics MRC, the Global Telecom Analytics Market is accounted for $7.8 billion in 2024 and is expected to reach $19.4 billion by 2030 growing at a CAGR of 16.5% during the forecast period. Telecom analytics refers to the process of gathering, interpreting, and applying data from telecommunications networks and systems to optimize operations and enhance service delivery. It involves analyzing vast amounts of data generated from call records, network performance metrics, customer interactions, and more, using advanced analytical techniques and tools. By extracting actionable insights, telecom analytics helps companies improve network efficiency, predict and prevent service disruptions, understand customer behavior for targeted marketing, and optimize resource allocation.

According to the research study by Statista, Global Consumer Survey conducted in the United States in 2022, it has been found that 44 percent of respondents use online storage for files and pictures, while 40 percent of respondents use online applications to create office documents.

Market Dynamics:

Driver:

Increasing demand for subscriber insights

The increasing demand for subscriber insights in Telecom Analytics reflects a growing recognition of data-driven decision-making in the telecommunications industry. Telecom companies are leveraging advanced analytics to gain deeper understanding of subscriber behavior, preferences, and trends. By analyzing vast amounts of data generated from customer interactions, service usage, and network performance, these insights enable providers to personalize offerings, optimize network resources, and improve overall customer experience.

Restraint:

Data privacy and security concerns

Data privacy and security concerns significantly impact telecom analytics by restricting access to valuable customer information and hindering data-driven insights. Telecom companies rely heavily on analyzing vast amounts of customer data to optimize services, predict trends, and enhance user experiences. However, stringent data protection regulations, such as GDPR and CCPA, necessitate rigorous data handling and storage practices to prevent breaches and misuse. This compliance often involves complex encryption methods and restricted data access, which can limit the breadth of analytics and slow down decision-making processes.

Opportunity:

Rising demand for predictive analytics

The increasing demand for predictive analytics in the telecom industry is transforming how companies operate and serve their customers. Predictive analytics utilizes data mining, machine learning, and statistical algorithms to analyze historical data and make predictions about future events or behaviors. In telecom, this translates to more personalized customer experiences, improved network management, and enhanced operational efficiency. By analyzing customer behavior patterns, telecom companies can anticipate churn, tailor marketing strategies, and offer targeted promotions, thereby increasing customer satisfaction and loyalty.

Threat:

Complexity of data integration

Data integration in telecom analytics is complex due to the vast and varied nature of the data sources involved. Telecom operators manage an extensive array of data types, including customer interactions, network performance metrics, billing information, and service usage patterns. These data sources are often stored in disparate systems with different formats, structures, and standards. Integrating this data requires significant effort to ensure consistency, accuracy, and timeliness. However, the challenge is further compounded by the need to merge historical data with real-time inputs, address data quality issues, and maintain privacy and security standards.

Covid-19 Impact:

The COVID-19 pandemic significantly impacted telecom analytics by accelerating digital transformation and altering usage patterns. With widespread lockdowns and remote work becoming the norm, there was a sharp increase in internet and mobile data consumption, prompting telecom companies to reevaluate their network capacities and service offerings. Analytics became crucial in managing this surge, helping providers optimize network performance, predict traffic spikes, and enhance customer experience. The pandemic exposed disparities in digital access, leading to a heightened focus on bridging connectivity gaps.

The Hardware segment is expected to be the largest during the forecast period

Hardware segment is expected to be the largest during the forecast period by integrating cutting-edge technologies and high-performance components into network infrastructure. Modern telecom analytics relies heavily on real-time data processing and analysis, which requires robust hardware solutions capable of handling vast amounts of data with low latency. Enhanced servers, specialized processors, and high-capacity storage systems are crucial in managing and interpreting complex network data streams. These advancements enable telecom providers to implement sophisticated analytics algorithms that improve network performance, optimize resource allocation, and enhance customer experience.

The Network Analytics segment is expected to have the highest CAGR during the forecast period

Network Analytics segment is expected to have the highest CAGR during the forecast period. Network Analytics is revolutionizing Telecom Analytics by providing deeper insights into network performance and customer behavior. This enhancement involves using advanced data analysis and machine learning to monitor and optimize network operations in real-time. By analyzing vast amounts of network data, Telecom Analytics can identify patterns, predict potential issues, and improve decision-making. Furthermore, this leads to more efficient network management, reduced downtime, and enhanced service quality for users. For telecom operators, Network Analytics enables proactive maintenance, better resource allocation, and targeted improvements, all of which contribute to a superior customer experience.

Region with largest share:

North America region commanded the largest share of the market over the projection period. As data consumption surges and new technologies like 5G and IoT proliferate, telecom operators face increasing pressure to enhance network efficiency and performance across the region. Network optimization involves analyzing vast amounts of data to improve bandwidth allocation, reduce latency, and ensure seamless connectivity. This process is driven by the regional need to handle higher data traffic, minimize operational costs, and provide a superior user experience. Telecom analytics tools have become crucial, enabling operators to predict network demand, identify and address potential issues proactively and implement strategic upgrades across the region.

Region with highest CAGR:

Europe region is projected to witness profitable growth during the extrapolated period. In the European telecom sector, government regulations are substantially enhancing the landscape of telecom analytics by fostering transparency, competition, and innovation. Regulations such as the General Data Protection Regulation (GDPR) ensure that telecom operators handle data responsibly, which improves consumer trust and encourages more comprehensive data collection and analysis across the region. The European Commission's initiatives to promote competition, like the removal of roaming charges and the push for better network infrastructure, drive telecom companies to adopt advanced analytics to stay competitive and optimize their services.

Key players in the market

Some of the key players in Telecom Analytics market include SAP SE, Accenture Plc, Adobe Inc, Cisco Systems Inc, Huawei Technologies, International Business Machines Corporation, Microsoft Corporation, Oracle Corporation, Teradata Corporation and Vodafone Group.

Key Developments:

In April 2024, Vodafone Idea (Vi) has initiated a fund infusion plan, starting with a preferential share issue to raise Rs 2,075 Crore from an Aditya Birla Group entity, essential for its financial revitalization.

In February 2024, Deutsche Telekom, Singtel, e& Group, SoftBank, and SK Telecom officially launched the Global Telco AI Alliance (GTAA) at MWC Barcelona 2024. Moreover, during the launch event, the telcos further announced plans to establish a joint venture, via which the companies will focus on developing Large Language Models (LLMs) specifically tailored to the needs of telecommunications companies.

In May 2023, Microsoft announced a new partnership with Orange to help Orange improve its network analytics capabilities. The partnership will use Microsoft's Azure cloud platform and Azure Machine Learning to help Orange analyze its network data and identify opportunities to improve performance and customer experience.

In February 2023, Google Cloud announced a partnership with Ericsson to help telecom operators improve their network performance and customer experience. The partnership will focus on using Google Cloud's analytics and machine learning capabilities to help Ericsson's customers gain insights into their network data.

In February 2023, Nokia Corporation announces the launch of AVA Customer and Mobile Network Insights, a cloud-native analytics software solution that simplifies 5G network data collection and analysis and delivers powerful, most cost-effective analytics to communications service providers (CSPs). With the help of machine learning and AI tools, the solution help to support automated and intelligent solution decision-making based on correlated reports generated from data across 5G networks.

Components Covered:

  • Software
  • Hardware
  • Services

Deployments Covered:

  • Cloud
  • On-premises

Enterprise Sizes Covered:

  • Small and Medium-sized Enterprises
  • Large Enterprises

Applications Covered:

  • Service Analytics
  • Network Analytics
  • Customer Analytics
  • Sales and Marketing Management
  • Risk and Compliance Management
  • Workforce Management
  • Other Applications

End Users Covered:

  • Media & Entertainment
  • Transportation & Logistics
  • Retail & E-Commerce
  • Government
  • Media & Entertainment
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Telecom Analytics Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Hardware
  • 5.4 Services
    • 5.4.1 Managed Services
    • 5.4.2 Professional Services

6 Global Telecom Analytics Market, By Deployment

  • 6.1 Introduction
  • 6.2 Cloud
  • 6.3 On-premises

7 Global Telecom Analytics Market, By Enterprise Size

  • 7.1 Introduction
  • 7.2 Small & Medium-sized Enterprises
  • 7.3 Large Enterprises

8 Global Telecom Analytics Market, By Application

  • 8.1 Introduction
  • 8.2 Service Analytics
  • 8.3 Network Analytics
  • 8.4 Customer Analytics
  • 8.5 Sales and Marketing Management
  • 8.6 Risk and Compliance Management
  • 8.7 Workforce Management
  • 8.8 Other Applications

9 Global Telecom Analytics Market, By End User

  • 9.1 Introduction
  • 9.2 Media & Entertainment
  • 9.3 Transportation & Logistics
  • 9.4 Retail & E-Commerce
  • 9.5 Government
  • 9.6 Media & Entertainment
  • 9.7 Other End Users

10 Global Telecom Analytics Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 SAP SE
  • 12.2 Accenture Plc
  • 12.3 Adobe Inc
  • 12.4 Cisco Systems Inc
  • 12.5 Huawei Technologies
  • 12.6 International Business Machines Corporation
  • 12.7 Microsoft Corporation
  • 12.8 Oracle Corporation
  • 12.9 Teradata Corporation
  • 12.10 Vodafone Group

List of Tables

  • Table 1 Global Telecom Analytics Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Telecom Analytics Market Outlook, By Component (2022-2030) ($MN)
  • Table 3 Global Telecom Analytics Market Outlook, By Software (2022-2030) ($MN)
  • Table 4 Global Telecom Analytics Market Outlook, By Hardware (2022-2030) ($MN)
  • Table 5 Global Telecom Analytics Market Outlook, By Services (2022-2030) ($MN)
  • Table 6 Global Telecom Analytics Market Outlook, By Managed Services (2022-2030) ($MN)
  • Table 7 Global Telecom Analytics Market Outlook, By Professional Services (2022-2030) ($MN)
  • Table 8 Global Telecom Analytics Market Outlook, By Deployment (2022-2030) ($MN)
  • Table 9 Global Telecom Analytics Market Outlook, By Cloud (2022-2030) ($MN)
  • Table 10 Global Telecom Analytics Market Outlook, By On-premises (2022-2030) ($MN)
  • Table 11 Global Telecom Analytics Market Outlook, By Enterprise Size (2022-2030) ($MN)
  • Table 12 Global Telecom Analytics Market Outlook, By Small & Medium-sized Enterprises (2022-2030) ($MN)
  • Table 13 Global Telecom Analytics Market Outlook, By Large Enterprises (2022-2030) ($MN)
  • Table 14 Global Telecom Analytics Market Outlook, By Application (2022-2030) ($MN)
  • Table 15 Global Telecom Analytics Market Outlook, By Service Analytics (2022-2030) ($MN)
  • Table 16 Global Telecom Analytics Market Outlook, By Network Analytics (2022-2030) ($MN)
  • Table 17 Global Telecom Analytics Market Outlook, By Customer Analytics (2022-2030) ($MN)
  • Table 18 Global Telecom Analytics Market Outlook, By Sales and Marketing Management (2022-2030) ($MN)
  • Table 19 Global Telecom Analytics Market Outlook, By Risk and Compliance Management (2022-2030) ($MN)
  • Table 20 Global Telecom Analytics Market Outlook, By Workforce Management (2022-2030) ($MN)
  • Table 21 Global Telecom Analytics Market Outlook, By Other Applications (2022-2030) ($MN)
  • Table 22 Global Telecom Analytics Market Outlook, By End User (2022-2030) ($MN)
  • Table 23 Global Telecom Analytics Market Outlook, By Media & Entertainment (2022-2030) ($MN)
  • Table 24 Global Telecom Analytics Market Outlook, By Transportation & Logistics (2022-2030) ($MN)
  • Table 25 Global Telecom Analytics Market Outlook, By Retail & E-Commerce (2022-2030) ($MN)
  • Table 26 Global Telecom Analytics Market Outlook, By Government (2022-2030) ($MN)
  • Table 27 Global Telecom Analytics Market Outlook, By Media & Entertainment (2022-2030) ($MN)
  • Table 28 Global Telecom Analytics Market Outlook, By Other End Users (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.