封面
市场调查报告书
商品编码
1603838

2030 年生物电池市场预测:按类型、原材料、技术、规模、运作环境、应用和地区进行的全球分析

Biobatteries Market Forecasts to 2030 - Global Analysis By Type, Source Material, Technology, Size, Operating Environment, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据Stratistics MRC的数据,2024年全球生物电池市场规模为1,162.4亿美元,预计到2030年将达到2,116亿美元,预测期内复合年增长率为10.5%。

生物电池是一种环保能源储存装置,透过涉及酵素、微生物和植物等有机物质的生化反应来发电。与传统电池不同,生物电池使用可再生生物成分,透过分解糖和有机废弃物等基材来产生能量。该过程提供了永续且通常生物分解的电源,可应用于消费性电子产品、医疗设备、环境监测和工业领域。

根据国际可再生能源机构(IRENA)的数据,2023年该地区清洁能源装置容量为2025万千瓦,高于上年的1,691.7万千瓦。

对环保能源的需求不断成长

随着世界向永续和环保能源来源的过渡,对生物电池的需求不断增加。这种电池使用砂糖和微生物等有机资源作为燃料,使其成为传统电池的清洁和可再生替代品。随着人们对环境污染和能源限制的担忧日益加剧,生物电池正在成为为各种小工具(包括家用电器和医疗植入)提供动力的可行选择。其减少碳排放和对不可再生资源依赖的能力鼓励其在各种行业中的使用,使其成为永续能源领域的主要力量。

初期研发成本高

高昂的初始研发 (R&D) 成本是生物电池市场的主要挑战,因为开发高效、耐用且商业性可行的生物电池技术需要大量投资。开发生物电池需要先进的生物技术、材料科学和工程知识,这会增加成本。此外,对专业设施和设备的需求增加了成本,特别是对于新兴企业和小型企业。这些过高的价格往往会抑制创新并推迟新的、扩充性的生物电池技术的发布。

穿戴式和可携式装置的扩展

对生物电池的需求主要是由穿戴式和可携式电子产品市场的扩张所推动的。这些小工具的范围从医疗植入到健身监视器和智慧手錶,都需要小型、有效且环保的电源。生物电池具有提供长寿命、永续电力的潜力,使其成为满足这个不断发展的行业需求的理想选择。随着穿戴式科技的发展,预计生物电池在未来的个人电子产品和医疗保健中将变得越来越重要。

储存和维护复杂性

生物电池难以储存和维护,因为它们依赖需要稳定环境条件的酵素和微生物等脆弱的生物成分。温度、湿度和 pH 值的变化都会导致微生物活性和酵素效率降低,进而影响表现。由于需要精确储存和定期维护而导致复杂性和增加的营业成本,生物电池不太适合需要高可靠性和低维护性能的应用。

COVID-19 的影响

COVID-19 大流行使积极的研究倡议停止并扰乱了供应链,对生物电池领域产生了重大影响。特别是对于依赖生物成分的公司来说,进入限制和关闭已经减缓了生产速度并减少了原材料的可得性。此外,经济的不确定性导致许多投资者停止投资,阻碍了生物电池技术的发展。然而,随着疫情的结束和安全通讯协定的推进,市场预计将復苏,并且对永续能源解决方案的重新关注将推动人们对生物电池的兴趣,因为传统电池的环保替代品正在增加。

微生物燃料电池(MFC)产业预计将在预测期内成为最大的产业

随着对永续能源解决方案的需求不断增长,微生物燃料电池(MFC)领域正在不断发展,加上微生物燃料电池将有机废弃物转化为电能的能力,预计将支持其在废弃物处理和可再生能源发电中的应用。此外,微生物生物技术的进步提高了 MFC 的产量和效率,增加了其在各种应用中的潜力。 MFC作为一种减少环境污染、促进资源回收的绿色能源来源,随着环保意识的增强和政府对绿色技术的支持而越来越受欢迎。

家用电子电器产业预计在预测期内复合年增长率最高

由于消费者越来越多地选择永续和环保技术,预计消费性电子产业在预测期内将实现最高的复合年增长率。随着环境问题受到越来越多的关注,生产商正在寻找传统电池的环保替代品。具有环保意识的客户会对生物电池感兴趣,因为它们是一种可再生且生物分解的替代品。生物电池技术的进步也将促进适合行动装置的更小、更轻的电源的开发,促进其整合到穿戴式装置、智慧型手机和其他电子设备中。

比最大的地区

亚太地区在预测期内将占据最大份额,对永续能源解决方案的需求不断增长,对环境问题的日益关注以及电子行业的爆炸性增长预计将占据市场扩张。此外,支持绿色技术和可再生能源的政府计划正在营造有利于生物电池进步和广泛采用的氛围。该地区庞大的人口和不断增长的中等收入阶层也推动了对经济实惠且环保的电力源的需求。

复合年增长率最高的地区:

由于消费者和企业寻求传统电池的环保替代品以及对永续能源解决方案的需求增加,预计北美在预测期内的复合年增长率最高。该地区研究机构和主要参与者的高度集中推动了生物电池开发的研发和技术突破。政府减少对石化燃料依赖的措施也透过对可再生能源技术的投资来支持产业成长。

免费客製化服务

订阅此报告的客户可以存取以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合分析(最多 3 家公司)
    • 主要企业SWOT分析(最多3家企业)
  • 区域分割
    • 根据客户兴趣对主要国家的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争标基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 资料分析
    • 资料检验
    • 研究途径
  • 研究资讯来源
    • 主要研究资讯来源
    • 二次研究资讯来源
    • 先决条件

第三章市场趋势分析

  • 促进因素
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 应用分析
  • 新兴市场
  • COVID-19 的影响

第4章波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争公司之间的敌对关係

第五章全球生物电池市场:按类型

  • 微生物燃料电池(MFC)
  • 酵素生质燃料电池(EBC)
  • 植物来源生物电池
  • 砂糖基生物电池
  • 其他类型

第六章全球生物电池市场:依原料分类

  • 有机废弃物
  • 植物生物量
  • 微生物

第七章全球生物电池市场:依技术分类

  • 直接电子转移
  • 间接电子转移

第八章全球生物电池市场:依规模

  • 小规模
  • 大规模

第九章全球生物电池市场:依运行环境分类

  • 水环境
  • 非水环境

第十章全球生物电池市场:依应用分类

  • 家电
  • 医疗设备
  • 环境监测
  • 工业用途
  • 运输
  • 小型电动工具
  • 玩具和穿戴式设备
  • 其他用途

第十一章全球生物电池市场:按地区

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东/非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲

第十二章 主要进展

  • 合约、伙伴关係、合作和合资企业
  • 收购和合併
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十三章 公司概况

  • Panasonic Corporation
  • Sony Corporation
  • Siemens AG
  • Enzinc Inc.
  • Nippon Telegraph and Telephone Corporation(NTT)
  • Hitachi Chemical Co., Ltd.
  • Nokia Bell Labs
  • MIT Lincoln Laboratory
  • Fujifilm Corporation
  • Aisin Seiki Co., Ltd.
  • Sanyo Electric Co., Ltd.
  • NEC Corporation
  • Murata Manufacturing Co., Ltd.
  • Johnson Matthey
  • Maxell Holdings, Ltd.
  • Greenlight Biosciences
Product Code: SMRC27860

According to Stratistics MRC, the Global Biobatteries Market is accounted for $116.24 billion in 2024 and is expected to reach $211.60 billion by 2030 growing at a CAGR of 10.5% during the forecast period. Biobatteries are eco-friendly energy storage devices that generate electricity through biochemical reactions involving organic materials like enzymes, microorganisms, or plant-based substances. Unlike traditional batteries, biobatteries use renewable biological components, producing energy by breaking down substrates such as sugars or organic waste. This process results in a sustainable, often biodegradable power source with applications in consumer electronics, medical devices, environmental monitoring, and industrial sectors.

According to the International Renewable Energy Agency (IRENA), the installed capacity of clean energy sources in the region in 2023 stood at 2,025 GW, an increase from the previous year's 1,691.77 GW.

Market Dynamics:

Driver:

Increasing demand for eco-friendly energy

Demand for biobatteries is rising as a result of the world's transition to sustainable and environmentally friendly energy sources. These batteries provide a clean and renewable substitute for conventional batteries because they are fuelled by organic resources like sugar or microorganisms. Biobatteries are becoming a viable option for powering a range of gadgets, including consumer electronics and medical implants, as worries about environmental contamination and energy constraint increase. Their ability to decrease carbon footprints and dependence on non-renewable resources is encouraging their use in a variety of industries, making them a major force in the field of sustainable energy.

Restraint:

High initial research and development costs

High initial research and development (R&D) costs are a significant challenge in the biobatteries market, as creating efficient, durable, and commercially viable biobattery technologies requires substantial investment. Advanced biotechnology, materials science, and engineering know-how are required to develop biobatteries, which can increase costs. Additionally, the cost is increased by the requirement for specific facilities and equipment, especially for start-ups or smaller businesses. These exorbitant prices frequently impede innovation, delaying the release of novel, scalable biobattery technologies.

Opportunity:

Expansion of wearable and portable devices

The need for biobatteries is being driven mostly by the growing market for wearable and portable electronics. These gadgets, which range from medical implants to fitness monitors and smart watches, need small, effective, and environmentally friendly power sources. Biobatteries are ideally suited to meet the demands of this expanding industry due to their potential for long-lasting, sustainable power. Biobatteries are predicted to become increasingly important in the future of personal electronics and healthcare as wearable technology develops.

Threat:

Complexity in storage and maintenance

The fact that biobatteries depend on delicate biological elements like enzymes and microbes, which need steady environmental conditions, makes storage and upkeep difficult. Temperature, humidity, and pH variations can all affect performance because they can cause microbial activity or enzyme effectiveness to deteriorate. Biobatteries are less appropriate for applications where great dependability and little maintenance are necessary for performance because of the complexity and increased operating costs caused by the requirement for accurate storage and routine maintenance.

Covid-19 Impact

The COVID-19 pandemic had a major effect on the biobatteries sector by stopping active research initiatives and upsetting supply networks. Immigration restrictions and lockdowns caused production delays and decreased raw material availability, especially for firms that depend on biological components. Furthermore, the economic uncertainties caused many investors to halt investment, which hampered the development of biobattery technology. However, the market is anticipated to rebound as the pandemic passes and safety protocols advance, with a renewed focus on sustainable energy solutions fuelling interest in biobatteries as environmentally benign substitutes for conventional batteries.

The microbial fuel cells (MFCs) segment is expected to be the largest during the forecast period

The microbial fuel cells (MFCs) segment is estimated to be the largest, due to the increasing need for sustainable energy solutions, coupled with the ability of MFCs to convert organic waste into electricity, supports their adoption in waste treatment and renewable energy generation. Furthermore, improvements in microbial biotechnology increase MFC output and efficiency, increasing their viability for a range of applications. As a green energy source that reduces pollution and encourages resource recovery, MFCs are gaining popularity due to rising environmental consciousness and government support for green technologies.

The consumer electronics segment is expected to have the highest CAGR during the forecast period

The consumer electronics segment is anticipated to witness the highest CAGR during the forecast period, due to consumers are increasingly choosing sustainable and environmentally friendly technology. As environmental concerns get more attention, producers are looking for environmentally hazardous alternatives to conventional batteries. Customers that care about the environment will find biobatteries intriguing since they provide a renewable and biodegradable alternative. The creation of small, lightweight power sources that are appropriate for portable devices is also made possible by advances in biobattery technology, which encourages their incorporation into wearables, smartphones, and other electronic devices.

Region with largest share:

Asia Pacific is expected to have the largest market share during the forecast period due to growing demand for sustainable energy solutions, growing environmental concerns, and the electronics industry's explosive growth are all contributing factors to this expansion. Furthermore, government programs supporting green technology and renewable energy are fostering an atmosphere that is conducive to the advancement and uptake of biobatteries. Another factor driving up demand for reasonably priced and environmentally friendly electricity sources is the region's sizable population and expanding middle class.

Region with highest CAGR:

North America is projected to witness the highest CAGR over the forecast period, as consumers and businesses seek environmentally friendly substitutes for conventional batteries; there is a growing need for sustainable energy solutions. Innovation and technical breakthroughs in the development of biobattery are encouraged by the region's robust concentration of research institutes and important players. Government measures to lessen dependency on fossil fuels also boost industry growth through investments in renewable energy technologies.

Key players in the market

Some of the key players profiled in the Biobatteries Market include Panasonic Corporation, Sony Corporation, Siemens AG, Enzinc Inc., Nippon Telegraph and Telephone Corporation (NTT), Hitachi Chemical Co., Ltd., Nokia Bell Labs, MIT Lincoln Laboratory, Fujifilm Corporation, Aisin Seiki Co., Ltd., Sanyo Electric Co., Ltd., NEC Corporation, Murata Manufacturing Co., Ltd., Johnson Matthey, Maxell Holdings, Ltd., and Greenlight Biosciences.

Key Developments:

In September 2023, Greenlight Biosciences revealed its latest advancements in biobattery technology, utilizing engineered microbes to enhance energy efficiency and reduce production costs.

In February 2022, Fujifilm introduced a bio-battery technology based on glucose that could power small electronics, targeting the consumer electronics market with a sustainable solution.

In January 2022, MIT announced the launch of a new type of enzymatic biofuel cell that demonstrates significant improvements in efficiency, expanding the potential applications for biobatteries.

Types Covered:

  • Microbial Fuel Cells (MFCs)
  • Enzymatic Biofuel Cells (EBCs)
  • Plant-Based Biobatteries
  • Sugar-Based Biobatteries
  • Other Types

Source Materials Covered:

  • Organic Waste
  • Plant Biomass
  • Microorganisms

Technologies Covered:

  • Direct Electron Transfer
  • Indirect Electron Transfer

Sizes Covered:

  • Small Scale
  • Large Scale

Operating Environments Covered:

  • Aqueous Environment
  • Non-Aqueous Environment

Applications Covered:

  • Consumer Electronics
  • Medical Devices
  • Environmental Monitoring
  • Industrial Application
  • Transportation
  • Small Electric Tools
  • Toys and Wearables
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 Application Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Biobatteries Market, By Type

  • 5.1 Introduction
  • 5.2 Microbial Fuel Cells (MFCs)
  • 5.3 Enzymatic Biofuel Cells (EBCs)
  • 5.4 Plant-Based Biobatteries
  • 5.5 Sugar-Based Biobatteries
  • 5.6 Other Types

6 Global Biobatteries Market, By Source Material

  • 6.1 Introduction
  • 6.2 Organic Waste
  • 6.3 Plant Biomass
  • 6.4 Microorganisms

7 Global Biobatteries Market, By Technology

  • 7.1 Introduction
  • 7.2 Direct Electron Transfer
  • 7.3 Indirect Electron Transfer

8 Global Biobatteries Market, By Size

  • 8.1 Introduction
  • 8.2 Small Scale
  • 8.3 Large Scale

9 Global Biobatteries Market, By Operating Environment

  • 9.1 Introduction
  • 9.2 Aqueous Environment
  • 9.3 Non-Aqueous Environment

10 Global Biobatteries Market, By Application

  • 10.1 Introduction
  • 10.2 Consumer Electronics
  • 10.3 Medical Devices
  • 10.4 Environmental Monitoring
  • 10.5 Industrial Application
  • 10.6 Transportation
  • 10.7 Small Electric Tools
  • 10.8 Toys and Wearables
  • 10.9 Other Applications

11 Global Biobatteries Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Panasonic Corporation
  • 13.2 Sony Corporation
  • 13.3 Siemens AG
  • 13.4 Enzinc Inc.
  • 13.5 Nippon Telegraph and Telephone Corporation (NTT)
  • 13.6 Hitachi Chemical Co., Ltd.
  • 13.7 Nokia Bell Labs
  • 13.8 MIT Lincoln Laboratory
  • 13.9 Fujifilm Corporation
  • 13.10 Aisin Seiki Co., Ltd.
  • 13.11 Sanyo Electric Co., Ltd.
  • 13.12 NEC Corporation
  • 13.13 Murata Manufacturing Co., Ltd.
  • 13.14 Johnson Matthey
  • 13.15 Maxell Holdings, Ltd.
  • 13.16 Greenlight Biosciences

List of Tables

  • Table 1 Global Biobatteries Market Outlook, By Region (2022-2030) ($MN)
  • Table 2 Global Biobatteries Market Outlook, By Type (2022-2030) ($MN)
  • Table 3 Global Biobatteries Market Outlook, By Microbial Fuel Cells (MFCs) (2022-2030) ($MN)
  • Table 4 Global Biobatteries Market Outlook, By Enzymatic Biofuel Cells (EBCs) (2022-2030) ($MN)
  • Table 5 Global Biobatteries Market Outlook, By Plant-Based Biobatteries (2022-2030) ($MN)
  • Table 6 Global Biobatteries Market Outlook, By Sugar-Based Biobatteries (2022-2030) ($MN)
  • Table 7 Global Biobatteries Market Outlook, By Other Types (2022-2030) ($MN)
  • Table 8 Global Biobatteries Market Outlook, By Source Material (2022-2030) ($MN)
  • Table 9 Global Biobatteries Market Outlook, By Organic Waste (2022-2030) ($MN)
  • Table 10 Global Biobatteries Market Outlook, By Plant Biomass (2022-2030) ($MN)
  • Table 11 Global Biobatteries Market Outlook, By Microorganisms (2022-2030) ($MN)
  • Table 12 Global Biobatteries Market Outlook, By Technology (2022-2030) ($MN)
  • Table 13 Global Biobatteries Market Outlook, By Direct Electron Transfer (2022-2030) ($MN)
  • Table 14 Global Biobatteries Market Outlook, By Indirect Electron Transfer (2022-2030) ($MN)
  • Table 15 Global Biobatteries Market Outlook, By Size (2022-2030) ($MN)
  • Table 16 Global Biobatteries Market Outlook, By Small Scale (2022-2030) ($MN)
  • Table 17 Global Biobatteries Market Outlook, By Large Scale (2022-2030) ($MN)
  • Table 18 Global Biobatteries Market Outlook, By Operating Environment (2022-2030) ($MN)
  • Table 19 Global Biobatteries Market Outlook, By Aqueous Environment (2022-2030) ($MN)
  • Table 20 Global Biobatteries Market Outlook, By Non-Aqueous Environment (2022-2030) ($MN)
  • Table 21 Global Biobatteries Market Outlook, By Application (2022-2030) ($MN)
  • Table 22 Global Biobatteries Market Outlook, By Consumer Electronics (2022-2030) ($MN)
  • Table 23 Global Biobatteries Market Outlook, By Medical Devices (2022-2030) ($MN)
  • Table 24 Global Biobatteries Market Outlook, By Environmental Monitoring (2022-2030) ($MN)
  • Table 25 Global Biobatteries Market Outlook, By Industrial Application (2022-2030) ($MN)
  • Table 26 Global Biobatteries Market Outlook, By Transportation (2022-2030) ($MN)
  • Table 27 Global Biobatteries Market Outlook, By Small Electric Tools (2022-2030) ($MN)
  • Table 28 Global Biobatteries Market Outlook, By Toys and Wearables (2022-2030) ($MN)
  • Table 29 Global Biobatteries Market Outlook, By Other Applications (2022-2030) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.