封面
市场调查报告书
商品编码
1766115

Mxene 市场,2032 年全球预测:按类型、形式、细分市场、应用、最终用户和地区

MXene Market Forecasts to 2032 - Global Analysis By Type (Ti-based Mxenes, Nb-based Mxenes, V-based Mxenes, Mo-based Mxenes, and Other Types), Form, Layer, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球 Mxene 市场预计在 2025 年将达到 5,962 万美元,到 2032 年将达到 3.9897 亿美元,预测期内的复合年增长率为 31.2%。

Mxene 是一类由过渡金属碳化物、氮化物和碳氮化物组成的二维 (2D) 奈米材料。它们于 2011 年被发现,是透过选择性蚀刻 MAX 相层而製备的。 MXene 以其高电导率、大表面积和可调的表面化学性质而闻名,广泛应用于能源储存、感测器、水净化和电子产品。其独特的性能使其成为下一代奈米技术和先进材料科学应用的有希望的候选材料。

对先进能源储存的需求不断增长

Mxene 卓越的导电性和巨大的表面积使其成为下一代电池的理想材料。其高效储存和输送能量的能力为电动车和便携式电子产品的进步奠定了基础。随着可再生能源发电的兴起,对可靠储存解决方案的需求变得更加重要。各国政府和各行业正在投资 Mxene 等先进材料以满足这一需求。预计在预测期内,这种日益增长的需求将显着推动 Mxene 市场的发展。

製造成本高

Mxene 的合成和加工成本高昂,是其大规模应用的主要障碍。目前的製造方法复杂,需要昂贵的原料和专用设备。这限制了其商业性化量产的可行性,尤其对于价格敏感的产业。目前,开发经济高效方法的研究仍在进行中,但其规模化应用仍是一项挑战。此外,严格的品管措施进一步增加了生产成本。这些财务和技术障碍正在短期内限制市场扩张。

软性电子产品和穿戴式电子产品的兴起

软性电子产品的快速发展为 Mxene 的应用开闢了新的途径。 Mxene 优异的柔韧性、机械强度和导电性使其非常适合穿戴式感测器和智慧纺织品。它也是软性电池和生物电子设备的有希望的候选材料。随着消费者对智慧穿戴装置和物联网设备的兴趣日益浓厚,对 MXene 等先进材料的需求也不断增长。其生物相容性进一步提升了其在医疗相关穿戴式装置的潜力。这一趋势为市场相关人员开发新应用提供了巨大的机会。

商业可用性有限

有限的产能和生产规模阻碍了MXene进入主流市场。由于担心供应稳定性,潜在的终端用户不愿整合Mxene。此外,其合成和品质缺乏标准化,影响了其在各种应用中的可靠性。智慧财产权限制也阻碍了其更广泛的应用和合作。这些限制因素对基于MXene的技术的快速商业化构成了严峻挑战。

COVID-19的影响

新冠疫情扰乱了全球供应链,影响了Mxene生产原料的供应。由于实验室和研究机构关闭或缩减营运规模,研究活动放缓。然而,由于生物医学和感测技术需求的增长,人们对先进材料的兴趣飙升。疫情后的復苏预计将带来对材料科学和奈米技术的再投资。随着各行各业的復工復产,Mxene市场有望重拾成长势头,并专注于创新和韧性。

预计在预测期内,Ti 基 Mxene 部分将占最大份额。

钛基Mxene材料凭藉其成熟的合成通讯协定和多功能特性,预计将在预测期内占据最大的市场占有率。这些Mxene材料具有高导电性、良好的化学稳定性和牢固的层间结合力。它们已被广泛应用于能源储存、电磁屏蔽、感测器和生物医学领域。此外,钛基Mxene材料常被用作比较研究的基准,这进一步增强了其市场吸引力。

预计医疗保健领域在预测期内将以最高的复合年增长率成长。

预计医疗保健领域将在预测期内实现最高成长率。 MXene 的生物相容性、抗菌性和导电性使其适用于药物传输、生物成像和组织工程。最近的研究表明,MXene 在智慧伤口敷料和植入式感测器方面具有潜力。随着个人化医疗和数位健康的发展,基于 MXene 的设备正日益受到青睐。

比最大的地区

在预测期内,亚太地区预计将占据最大的市场占有率,这得益于其在奈米材料研究和製造领域的强劲投资。中国、日本和韩国等国家在 MXene 相关创新领域处于领先地位。该地区的学术机构和政府资金正在支持这一快速发展。此外,蓬勃发展的电子和能源产业对 MXene 等先进材料的需求也日益旺盛。领先製造商的涌现和不断扩展的研发基础设施进一步推动了这一成长。

复合年增长率最高的地区:

由于北美地区专注于资助先进技术和创新,预计该地区在预测期内的复合年增长率最高。顶尖研究型大学和新兴企业的存在促进了材料的快速开发。对高性能电子和能源设备日益增长的需求将支持市场扩张。政府补贴和私人投资正在加速其商业化进程。此外,人们对 Mxene 在航太、国防和生物医学应用方面的兴趣日益浓厚。

免费客製化服务:

订阅此报告的客户可享有以下免费自订选项之一:

  • 公司简介
    • 其他市场参与者的综合概况(最多 3 家公司)
    • 主要企业的SWOT分析(最多3家公司)
  • 地理细分
    • 根据客户兴趣对主要国家市场进行估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 研究范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 主要研究资料
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 限制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买家的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球 MXene 市场类型

  • 钛基Mxene
  • Nb基Mxene
  • 钒基 Mxene
  • 钼基Mxene
  • 其他类型

6. 全球 MXene 市场(依形态)

  • 粉末
  • MXene基复合材料
  • 纯 Mxene
  • MXene奈米材料
  • MXene涂层

7. 全球 MXene 市场区隔

  • 多层堆迭Mxene
  • 单层Mxene

8. 全球 MXene 市场(按应用)

  • 能源储存
  • 光电子
  • 环境修復
  • 生物医学应用
  • 光催化剂
  • 电磁屏蔽
  • 气体感测器
  • 导电涂层
  • 其他应用

第九章全球 MXene 市场(以最终用户划分)

  • 航太和国防
  • 消费性电子产品
  • 卫生保健
  • 环境
  • 能源和电力
  • 工业製造
  • 其他最终用户

第 10 章全球 MXene 市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十二章 公司简介

  • American Elements
  • Sigma-Aldrich
  • Carbon-Ukraine
  • Japan Material Technologies Corporation(JMTC)
  • Nanochemazone Inc.
  • Beike 2D Materials
  • ACS Material
  • Nanjing XFNANO Materials
  • Beijing Zhongkeleiming Technology
  • 6Carbon Technology
  • Nanoshel
  • Foshan Xinxi Technology
  • Drexel University
  • Nanocomp Technologies Inc.
  • Vorbeck Materials Corp.
  • Group NanoXplore Inc.
  • Angstron Materials
  • Garmor Inc.
  • Skeleton Technologies
Product Code: SMRC29971

According to Stratistics MRC, the Global Mxene Market is accounted for $59.62 million in 2025 and is expected to reach $398.97 million by 2032 growing at a CAGR of 31.2% during the forecast period. MXenes are a class of two-dimensional (2D) nanomaterials composed of transition metal carbides, nitrides, or carbonitrides. Discovered in 2011, they are produced by selectively etching layers from MAX phases. Known for their high electrical conductivity, large surface area, and tunable surface chemistry, MXenes are used in energy storage, sensors, water purification, and electronics. Their unique properties make them promising materials for next-generation nanotechnology and advanced material science applications.

Market Dynamics:

Driver:

Growing demand for advanced energy storage

MXenes offer exceptional electrical conductivity and a large surface area, making them ideal for next-generation batteries. Their ability to store and deliver energy efficiently supports advancements in electric vehicles and portable electronics. As renewable energy generation grows, the requirement for reliable storage solutions becomes more critical. Governments and industries are investing in advanced materials like MXenes to meet these demands. This growing need is expected to significantly boost the MXene market during the forecast period.

Restraint:

High production costs

The high cost of synthesizing and processing MXenes is a major barrier to large-scale adoption. Current production methods are complex and require expensive raw materials and specialized equipment. This limits their feasibility for commercial mass production, especially for price-sensitive industries. Although research is ongoing to develop cost-effective methods, scalability remains a challenge. Additionally, strict quality control measures increase production costs further. These financial and technical hurdles restrain market expansion in the near term.

Opportunity:

Rise in flexible and wearable electronics

The rapid growth of flexible electronics opens new avenues for MXene adoption. MXenes' excellent flexibility, mechanical strength, and conductivity make them suitable for wearable sensors and smart textiles. They are also promising candidates for flexible batteries and bioelectronic devices. As consumer interest in smart wearables and IoT devices grows, so does the demand for advanced materials like MXenes. Their biocompatibility further enhances potential in healthcare-related wearables. This trend presents a significant opportunity for market players to capitalize on emerging applications.

Threat:

Limited commercial availability

Limited manufacturing capabilities and production scale hinder their entry into mainstream markets. Potential end-users are hesitant to integrate MXenes due to concerns about supply consistency. Moreover, lack of standardization in synthesis and quality affects their reliability across applications. Intellectual property restrictions also prevent broader adoption and collaboration. These constraints pose a serious challenge to the rapid commercialization of MXene-based technologies.

Covid-19 Impact

The COVID-19 pandemic disrupted global supply chains, impacting the availability of raw materials for MXene production. Research activities slowed down as laboratories and institutions shut down or reduced operations. However, interest in advanced materials surged due to increased demand for biomedical and sensing technologies. Post-pandemic recovery is expected to bring renewed investments in material science and nanotechnology. As industries resume operations, the MXene market is poised to regain momentum with a focus on innovation and resilience.

The Ti-based mxenes segment is expected to be the largest during the forecast period

The Ti-based mxenes segment is expected to account for the largest market share during the forecast period, due to their well-established synthesis protocols and versatile properties. These MXenes exhibit high electrical conductivity, good chemical stability, and strong interlayer bonding. They are widely researched for applications in energy storage, EMI shielding, sensors, and biomedical fields. Additionally, Ti-based MXenes are often used as the benchmark in comparative studies, further boosting their market appeal.

The healthcare segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the healthcare segment is predicted to witness the highest growth rate, due to increasing interest in MXenes for biomedical applications. Their biocompatibility, antibacterial properties, and conductivity make them suitable for drug delivery, bioimaging, and tissue engineering. Recent studies have shown their potential for smart wound dressings and implantable sensors. As personalized medicine and digital health grow, MXene-based devices are gaining traction.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share due to strong investments in nanomaterials research and manufacturing. Countries like China, Japan, and South Korea are at the forefront of MXene-related innovations. Academic institutions and government funding in this region support rapid development. Additionally, booming electronics and energy industries create high demand for advanced materials like MXenes. The presence of major manufacturers and expanding R&D infrastructure further fuel growth.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to its strong emphasis on advanced technologies and innovation funding. The presence of leading research universities and start-ups promotes rapid material development. Increased demand for high-performance electronics and energy devices supports market expansion. Government grants and private investments are accelerating commercialization efforts. Moreover, interest in MXenes for aerospace, defense, and biomedical applications is growing.

Key players in the market

Some of the key players profiled in the Mxene Market include American Elements, Sigma-Aldrich, Carbon-Ukraine, Japan Material Technologies Corporation (JMTC), Nanochemazone Inc., Beike 2D Materials, ACS Material, Nanjing XFNANO Materials, Beijing Zhongkeleiming Technology, 6Carbon Technology, Nanoshel, Foshan Xinxi Technology, Drexel University, Nanocomp Technologies Inc., Vorbeck Materials Corp., Group NanoXplore Inc., Angstron Materials, Garmor Inc., and Skeleton Technologies.

Key Developments:

In January 2024, JNC Corporation and Professor Eiji Haramoto of the Interdisciplinary Center for River Basin Environment, University of Yamanashi have jointly developed "PegcisionO Kit", magnetic nanoparticles for wastewater-based epidemiological survey. They are pleased to announce that JNC Corporation has launched the sale of the developed kit on February 1, 2024.Please refer to the attached file for details.

In July 2021, Asbury Carbons, Inc., the leading global processor of carbon and graphite materials, announced that it has acquired Garmor, Inc., an advanced materials company based in Orlando, Florida with a patented, environmentally friendly process for the commercial production of Edge Functionalized Graphene (EFG).

Types Covered:

  • Ti-based Mxenes
  • Nb-based Mxenes
  • V-based Mxenes
  • Mo-based Mxenes
  • Other Types

Forms Covered:

  • Powder
  • MXene-based Composites
  • Pure Mxenes
  • MXene Nanomaterials
  • MXene Coatings

Layers Covered:

  • Multi-layered Stacked Mxenes
  • Single-layer Mxenes

Applications Covered:

  • Energy Storage
  • Optoelectronics
  • Environmental Remediation
  • Biomedical Applications
  • Photocatalysis
  • Electromagnetic Shielding
  • Gas Sensors
  • Conductive Coatings
  • Other Applications

End Users Covered:

  • Automotive
  • Aerospace and Defense
  • Consumer Electronics
  • Healthcare
  • Environmental
  • Energy & Power
  • Industrial Manufacturing
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global MXene Market, By Type

  • 5.1 Introduction
  • 5.2 Ti-based Mxenes
  • 5.3 Nb-based Mxenes
  • 5.4 V-based Mxenes
  • 5.5 Mo-based Mxenes
  • 5.6 Other Types

6 Global MXene Market, By Form

  • 6.1 Introduction
  • 6.2 Powder
  • 6.3 MXene-based Composites
  • 6.4 Pure Mxenes
  • 6.5 MXene Nanomaterials
  • 6.6 MXene Coatings

7 Global MXene Market, By Layer

  • 7.1 Introduction
  • 7.2 Multi-layered Stacked Mxenes
  • 7.3 Single-layer Mxenes

8 Global MXene Market, By Application

  • 8.1 Introduction
  • 8.2 Energy Storage
  • 8.3 Optoelectronics
  • 8.4 Environmental Remediation
  • 8.5 Biomedical Applications
  • 8.6 Photocatalysis
  • 8.7 Electromagnetic Shielding
  • 8.8 Gas Sensors
  • 8.9 Conductive Coatings
  • 8.10 Other Applications

9 Global MXene Market, By End User

  • 9.1 Introduction
  • 9.2 Automotive
  • 9.3 Aerospace and Defense
  • 9.4 Consumer Electronics
  • 9.5 Healthcare
  • 9.6 Environmental
  • 9.7 Energy & Power
  • 9.8 Industrial Manufacturing
  • 9.9 Other End Users

10 Global MXene Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 American Elements
  • 12.2 Sigma-Aldrich
  • 12.3 Carbon-Ukraine
  • 12.4 Japan Material Technologies Corporation (JMTC)
  • 12.5 Nanochemazone Inc.
  • 12.6 Beike 2D Materials
  • 12.7 ACS Material
  • 12.8 Nanjing XFNANO Materials
  • 12.9 Beijing Zhongkeleiming Technology
  • 12.10 6Carbon Technology
  • 12.11 Nanoshel
  • 12.12 Foshan Xinxi Technology
  • 12.13 Drexel University
  • 12.14 Nanocomp Technologies Inc.
  • 12.15 Vorbeck Materials Corp.
  • 12.16 Group NanoXplore Inc.
  • 12.17 Angstron Materials
  • 12.18 Garmor Inc.
  • 12.19 Skeleton Technologies

List of Tables

  • Table 1 Global MXene Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global MXene Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global MXene Market Outlook, By Ti-based Mxenes (2024-2032) ($MN)
  • Table 4 Global MXene Market Outlook, By Nb-based Mxenes (2024-2032) ($MN)
  • Table 5 Global MXene Market Outlook, By V-based Mxenes (2024-2032) ($MN)
  • Table 6 Global MXene Market Outlook, By Mo-based Mxenes (2024-2032) ($MN)
  • Table 7 Global MXene Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 8 Global MXene Market Outlook, By Form (2024-2032) ($MN)
  • Table 9 Global MXene Market Outlook, By Powder (2024-2032) ($MN)
  • Table 10 Global MXene Market Outlook, By MXene-based Composites (2024-2032) ($MN)
  • Table 11 Global MXene Market Outlook, By Pure Mxenes (2024-2032) ($MN)
  • Table 12 Global MXene Market Outlook, By MXene Nanomaterials (2024-2032) ($MN)
  • Table 13 Global MXene Market Outlook, By MXene Coatings (2024-2032) ($MN)
  • Table 14 Global MXene Market Outlook, By Layer (2024-2032) ($MN)
  • Table 15 Global MXene Market Outlook, By Multi-layered Stacked Mxenes (2024-2032) ($MN)
  • Table 16 Global MXene Market Outlook, By Single-layer Mxenes (2024-2032) ($MN)
  • Table 17 Global MXene Market Outlook, By Application (2024-2032) ($MN)
  • Table 18 Global MXene Market Outlook, By Energy Storage (2024-2032) ($MN)
  • Table 19 Global MXene Market Outlook, By Optoelectronics (2024-2032) ($MN)
  • Table 20 Global MXene Market Outlook, By Environmental Remediation (2024-2032) ($MN)
  • Table 21 Global MXene Market Outlook, By Biomedical Applications (2024-2032) ($MN)
  • Table 22 Global MXene Market Outlook, By Photocatalysis (2024-2032) ($MN)
  • Table 23 Global MXene Market Outlook, By Electromagnetic Shielding (2024-2032) ($MN)
  • Table 24 Global MXene Market Outlook, By Gas Sensors (2024-2032) ($MN)
  • Table 25 Global MXene Market Outlook, By Conductive Coatings (2024-2032) ($MN)
  • Table 26 Global MXene Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 27 Global MXene Market Outlook, By End User (2024-2032) ($MN)
  • Table 28 Global MXene Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 29 Global MXene Market Outlook, By Aerospace and Defense (2024-2032) ($MN)
  • Table 30 Global MXene Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 31 Global MXene Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 32 Global MXene Market Outlook, By Environmental (2024-2032) ($MN)
  • Table 33 Global MXene Market Outlook, By Energy & Power (2024-2032) ($MN)
  • Table 34 Global MXene Market Outlook, By Industrial Manufacturing (2024-2032) ($MN)
  • Table 35 Global MXene Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.