封面
市场调查报告书
商品编码
1803040

全球食物废弃物PHA 市场预测(至 2032 年):按类型、生产方法、原料来源、分销管道、应用、最终用户和地区进行分析

Food Waste PHA Market Forecasts to 2032 - Global Analysis By Type, Production Method, Feedstock Source, Distribution Channel, Application, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球食物废弃物脂肪酸酯 (PHA) 市场规模预计在 2025 年达到 6,420 万美元,到 2032 年将达到 1.531 亿美元,预测期内复合年增长率为 13.2%。食物废弃物羟基脂肪酸酯 (PHA) 是透过微生物发酵由有机食物废弃物合成的聚羟基烷酯。这些生物聚合物是石油基塑胶的永续替代品,具有生物分解性,并减少对环境的影响。透过将废弃食物转化为有价值的原料,这项工艺符合循环经济的原则,并最大限度地减少了对掩埋的依赖。

所得聚羟基脂肪酸酯 (PHA) 可用于包装、农业和医疗应用。该方法将废弃物价值化与绿色化学相结合,促进了生态高效的生产,并从消费后食品残渣中回收资源。

根据联合国环境规划署《202​​1年食物浪费指标报告》,2019年约有9.31亿吨食物被浪费,其中61%来自家庭,26%来自餐馆,13%来自零售。

非生物分解塑胶废弃物的增加是一个全球性问题

由于传统塑胶在生态系统中可持续存在数百年,监管机构和产业正在寻求永续的替代品。食品废弃物衍生的聚羟基脂肪酸酯 (PHA) 提供了一种极具吸引力的解决方案,因为它们可以自然分解,不会留下有害残留物。消费者意识的提升和企业永续性目标的提升,尤其是在包装和农业领域,进一步推动了这一转变。随着世界各国政府加强对一次性塑胶的监管,食物废弃物衍生的聚羟基脂肪酸酯市场正在蓬勃发展。

食物废弃物分类与收集不足

都市垃圾通常含有有机和无机物质的混合物,这使得提取可用于生产聚羟基脂肪酸酯(PHA)的原料变得复杂。这不仅影响产量,还会增加加工成本。废弃物分类基础设施和公众参与不足也阻碍了规模化生产。如果没有有针对性的政策干预和对废弃物管理物流的投资,清洁有机基材的供应将持续不稳定,从而减缓市场成长。

整合废弃物管理与循环经济

将聚羟基脂肪酸酯 (PHA) 纳入循环经济框架,为永续材料创新提供了变革机会。废弃物厨余转化为高价值生质塑胶,可以帮助企业减少对掩埋的依赖,并实现资源闭环。这种方法符合全球永续性目标,并为市政当局和製造商提供经济奖励。此外,废弃物处理商、生技公司和包装公司之间的策略合作正在加速各产业的应用。

政策不利变化的风险

虽然现行法规有利于生物分解性材料,但政策和补贴制度的快速变化可能会破坏PHA市场的稳定。例如,如果政府优先考虑其他生物基聚合物或减少对废弃物转化为生质塑胶的奖励,投资流向可能会发生变化。此外,该行业对政策支持的依赖使其容易受到政治和经济波动的影响,尤其是在法律规范仍在发展中的新兴市场。

COVID-19的影响:

新冠疫情为废弃物PHA市场带来了挑战与机会。最初,废弃物收集和工业发酵作业的中断导致供应链出现瓶颈,并拖慢了生产週期。然而,疫情期间一次性塑胶的激增,使得生物分解性替代品的需求更加迫切。各国政府和企业已开始重新评估其包装策略,这推动了人们对可再生废弃物衍生PHA的兴趣日益浓厚。疫情刺激了分散式废弃物和微生物培养优化的技术创新,为长期成长奠定了基础。

中炼长度(MCL)PHA 市场预计将在预测期内占据最大份额

中炼长 (MCL) PHA 凭藉其优异的机械性能和广泛的应用前景,预计将在预测期内占据最大的市场占有率。它们在海洋和土壤环境中的降解能力使其在环境敏感地区极具吸引力。微生物工程的创新提高了从食品废弃物基材中生产 MCL 的产量,进一步提升了其商业性可行性。随着各行各业对高性能生质塑胶的追求,MCL PHA 正逐渐成为首选。

混合微生物培养部分预计将在预测期内以最高的复合年增长率成长

混合微生物培养领域预计将在预测期内呈现最高成长率,这得益于其成本效益和对异质废弃物流的适应性。与纯培养不同,混合菌群可以在波动的原料成分上生长,使其成为现实世界食物废弃物的理想选择。该领域在新兴企业和市政废弃物商中越来越受欢迎,他们希望在不依赖纯化基材的情况下扩大PHA的生产规模。混合培养的灵活性和韧性使其成为该行业的关键成长引擎。

比最大的地区

预计北美将在预测期内占据最大市场占有率,这得益于其强大的废弃物管理基础设施和强有力的监管推动。该地区对永续包装和企业ESG计画的重视,正在推动整个食品饮料产业的采用。领先的生物技术公司和学术机构正在投资先导计画和商业规模的发酵设施。此外,有利的政策框架和技术成熟度使北美成为市场主导力量。

复合年增长率最高的地区:

受都市化进程加快、食品加工产业扩张以及环保意识不断提升的推动,预计亚太地区在预测期内将呈现最高的复合年增长率。中国、印度和印尼等国家产生大量的食物废弃物,为PHA生产提供了丰富的原料。低成本发酵技术的创新和区域合作进一步增强了扩充性。该地区不断变化的监管格局和不断提升的消费者意识预计将在整个预测期内保持高成长率。

免费客製化服务:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究资讯来源
    • 初级研究资讯来源
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球食物废弃物PHA 市场(按类型)

  • 短链(SCL)PHA
    • 聚羟基丁酸酯(PHB)
    • 聚羟基丁酸酯-羟基戊酸酯 (PHBV)
    • 聚羟基戊酸酯(PHV)
  • 中炼长(MCL)PHA
    • 聚羟基己酸酯(PHHx)
    • 聚羟基辛酸(PHO)
  • 长链(LCL)PHA
  • 其他类型

6. 全球食品废弃物PHA市场(依生产方法)

  • 细菌发酵
  • 混合微生物培养
  • 酵素转化
  • 甲烷发酵
  • 其他製造方法

7. 全球食品废弃物PHA 市场(依原始材料来源)

  • 家庭食物废弃物
  • 工业食品加工废弃物
  • 农业食品残留物
  • 餐厅及餐饮业废弃物
  • 其他来源

8. 全球食物废弃物PHA市场(依分销管道)

  • 直销(B2B)
  • 经销商和供应商
  • 网路销售管道
  • 其他分销管道

9. 全球食品废弃物PHA市场(按应用)

  • 包装和食品服务
  • 缝合线和针迹
  • 植入和支架
  • 药物输送系统
  • 地膜和花盆
  • 缓释性肥料
  • 3D列印灯丝
  • 污水处理
  • 其他用途

第十章 全球食物废弃物PHA 市场(按最终用户)

  • 农业
  • 卫生保健
  • 城市废弃物管理
  • 工业生质塑胶
  • 其他最终用户

第 11 章全球食物废弃物PHA 市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十三章:公司概况

  • Danimer Scientific
  • RWDC Industries
  • Newlight Technologies
  • Kaneka Corporation
  • Bio-on SpA
  • Full Cycle Bioplastics
  • Genecis Bioindustries
  • Bluepha Co. Ltd.
  • TianAn Biologic Materials Co., Ltd.
  • Shenzhen Ecomann Biotechnology Co., Ltd.
  • PHB Industrial SA
  • CJ CheilJedang Corp.
  • TerraVerdae Bioworks
  • Paques Biomaterials
  • PolyFerm Canada
  • Biomer
  • Tepha Inc.
  • Yield10 Bioscience, Inc.
  • P&G Chemicals
  • Mango Materials
Product Code: SMRC30565

According to Stratistics MRC, the Global Food Waste PHA Market is accounted for $64.2 million in 2025 and is expected to reach $153.1 million by 2032 growing at a CAGR of 13.2% during the forecast period. Food wastes PHA are polyhydroxyalkanoates synthesized from organic food waste through microbial fermentation. These biopolymers serve as sustainable alternatives to petroleum-based plastics, offering biodegradability and reduced environmental impact. By converting discarded food into valuable raw material, this process supports circular economy principles and minimizes landfill dependency. The resulting PHAs can be used in packaging, agriculture, and medical applications. This approach integrates waste valorization with green chemistry, promoting eco-efficient production and resource recovery from post-consumer food residues.

According to the United Nations Environment Programme's Food Waste Index Report 2021 approximately 931 million tonnes of food were wasted in 2019, with households accounting for 61%, food service 26%, and retail 13%.

Market Dynamics:

Driver:

Increasing global problem of non-biodegradable plastic waste

Conventional plastics, which linger in ecosystems for centuries, have prompted regulatory bodies and industries to seek sustainable substitutes. PHAs derived from food waste offer a compelling solution, decomposing naturally without leaving harmful residues. This shift is further supported by consumer awareness and corporate sustainability goals, especially in packaging and agriculture sectors. As governments tighten restrictions on single-use plastics, the market for food waste-based PHAs is gaining momentum.

Restraint:

Insufficient segregated food-waste collection

Municipal waste streams often mix organic and inorganic materials, complicating the extraction of usable feedstock for PHA production. This not only affects yield quality but also increases processing costs. Inadequate infrastructure and public participation in waste sorting further hinder scalability. Without targeted policy interventions and investment in waste management logistics, the supply of clean organic substrates will remain inconsistent, slowing market growth.

Opportunity:

Waste management and circular economy integration

The integration of PHAs into circular economy frameworks presents a transformative opportunity for sustainable material innovation. By converting food waste into high-value bioplastics, companies can reduce landfill dependency and close resource loops. This approach aligns with global sustainability targets and offers economic incentives for municipalities and manufacturers alike. Moreover strategic collaborations between waste processors, biotech firms, and packaging companies are accelerating adoption across sectors.

Threat:

Risk of unfavorable policy changes

While current regulations favor biodegradable materials, abrupt shifts in policy or subsidy structures could destabilize the PHA market. For instance, if governments prioritize other bio-based polymers or reduce incentives for waste-to-bioplastic conversion, investment flows may be redirected. Additionally, the sector's reliance on policy support makes it vulnerable to political and economic fluctuations, especially in emerging markets where regulatory frameworks are still evolving.

Covid-19 Impact:

The COVID-19 pandemic introduced both challenges and opportunities for the Food Waste PHA market. Initial disruptions in waste collection and industrial fermentation operations led to supply chain bottlenecks, delaying production cycles. However, as single-use plastics surged during the pandemic, the need for biodegradable alternatives became more urgent. Governments and corporations began reevaluating packaging strategies, boosting interest in PHAs derived from renewable waste. The pandemic catalyzed innovation in decentralized waste processing and microbial culture optimization, laying the groundwork for long-term growth.

The medium chain length (MCL) PHAs segment is expected to be the largest during the forecast period

The medium chain length (MCL) PHAs segment is expected to account for the largest market share during the forecast period due to its superior mechanical properties and versatility across applications. Their ability to degrade in marine and soil environments adds to their appeal in eco-sensitive regions. Innovations in microbial engineering are improving MCL yield from food waste substrates, further strengthening their commercial viability. As industries seek high-performance bioplastics, MCL PHAs are emerging as the preferred choice.

The mixed microbial culture segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the mixed microbial culture segment is predicted to witness the highest growth rate driven by their cost-effectiveness and adaptability to heterogeneous waste streams. Unlike pure cultures, mixed consortia can thrive on variable feedstock compositions, making them ideal for real-world food waste scenarios. This segment is gaining traction among startups and municipal waste processors aiming to scale PHA production without relying on refined substrates. The flexibility and resilience of mixed cultures position them as a key growth engine for the industry.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share supported by robust waste management infrastructure and strong regulatory backing. The region's emphasis on sustainable packaging and corporate ESG commitments is driving adoption across food and beverage sectors. Leading biotech firms and academic institutions are investing in pilot projects and commercial-scale fermentation facilities. Additionally, Favorable policy frameworks and technological maturity make North America a dominant force in the market.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR fueled by rising urbanization, expanding food processing industries, and increasing environmental awareness. Countries like China, India, and Indonesia are generating vast quantities of food waste, creating abundant feedstock for PHA production. Innovations in low-cost fermentation technologies and regional collaborations are further enhancing scalability. The region's dynamic regulatory landscape and growing consumer consciousness are expected to sustain high growth rates throughout the forecast period.

Key players in the market

Some of the key players in Food Waste PHA Market include Danimer Scientific, RWDC Industries, Newlight Technologies, Kaneka Corporation, Bio-on SpA, Full Cycle Bioplastics, Genecis Bioindustries, Bluepha Co. Ltd., TianAn Biologic Materials Co., Ltd., Shenzhen Ecomann Biotechnology Co., Ltd., PHB Industrial S.A., CJ CheilJedang Corp., TerraVerdae Bioworks, Paques Biomaterials, PolyFerm Canada, Biomer, Tepha Inc., Yield10 Bioscience, Inc., P&G Chemicals, and Mango Materials.

Key Developments:

In July 2025, Teknor Apex acquired Danimer Scientific, with the acquisition announced Danimer will continue operating under its own name but now benefits from Teknor's scale and resources to advance biopolymer commercialization.

In June 2025, Newlight's AirCarbon gaining traction through brand collaborations (like Nike, H&M, Shake Shack, Ben & Jerry's) and unveiling plans for a $1.1 billion manufacturing facility in Manitoba, Canada. The coverage underscores their scaling strategy-both in production capacity and adoption across consumer goods and packaging sectors.

Types Covered:

  • Short Chain Length (SCL) PHAs
  • Medium Chain Length (MCL) PHAs
  • Long Chain Length (LCL) PHAs
  • Other Types

Production Methods Covered:

  • Bacterial Fermentation
  • Mixed Microbial Culture
  • Enzymatic Conversion
  • Methane Fermentation
  • Other Production Methods

Feedstock Sources Covered:

  • Household Food Waste
  • Industrial Food Processing Waste
  • Agricultural Food Residues
  • Restaurant & Catering Waste
  • Other Feedstock Sources

Distribution Channels Covered:

  • Direct Sales (B2B)
  • Distributors & Suppliers
  • Online Sales Channels
  • Other Distribution Channels

Applications Covered:

  • Packaging & Food Services
  • Sutures & Stitches
  • Implants & Scaffolds
  • Drug Delivery Systems
  • Mulch Films & Plant Pots
  • Controlled-Release Fertilizers
  • 3D Printing Filaments
  • Wastewater Treatment
  • Other Applications

End Users Covered:

  • Agriculture
  • Healthcare
  • Municipal Waste Management
  • Industrial Bioplastics
  • Other End Users

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Food Waste PHA Market, By Type

  • 5.1 Introduction
  • 5.2 Short Chain Length (SCL) PHAs
    • 5.2.1 Polyhydroxybutyrate (PHB)
    • 5.2.2 Polyhydroxybutyrate-co-hydroxyvalerate (PHBV)
    • 5.2.3 Polyhydroxyvalerate (PHV)
  • 5.3 Medium Chain Length (MCL) PHAs
    • 5.3.1 Polyhydroxyhexanoate (PHHx)
    • 5.3.2 Polyhydroxyoctanoate (PHO)
  • 5.4 Long Chain Length (LCL) PHAs
  • 5.5 Other Types

6 Global Food Waste PHA Market, By Production Method

  • 6.1 Introduction
  • 6.2 Bacterial Fermentation
  • 6.3 Mixed Microbial Culture
  • 6.4 Enzymatic Conversion
  • 6.5 Methane Fermentation
  • 6.6 Other Production Methods

7 Global Food Waste PHA Market, By Feedstock Source

  • 7.1 Introduction
  • 7.2 Household Food Waste
  • 7.3 Industrial Food Processing Waste
  • 7.4 Agricultural Food Residues
  • 7.5 Restaurant & Catering Waste
  • 7.6 Other Feedstock Sources

8 Global Food Waste PHA Market, By Distribution Channel

  • 8.1 Introduction
  • 8.2 Direct Sales (B2B)
  • 8.3 Distributors & Suppliers
  • 8.4 Online Sales Channels
  • 8.5 Other Distribution Channels

9 Global Food Waste PHA Market, By Application

  • 9.1 Introduction
  • 9.2 Packaging & Food Services
  • 9.3 Sutures & Stitches
  • 9.4 Implants & Scaffolds
  • 9.5 Drug Delivery Systems
  • 9.6 Mulch Films & Plant Pots
  • 9.7 Controlled-Release Fertilizers
  • 9.8 3D Printing Filaments
  • 9.9 Wastewater Treatment
  • 9.10 Other Applications

10 Global Food Waste PHA Market, By End User

  • 10.1 Introduction
  • 10.2 Agriculture
  • 10.3 Healthcare
  • 10.4 Municipal Waste Management
  • 10.5 Industrial Bioplastics
  • 10.6 Other End Users

11 Global Food Waste PHA Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Danimer Scientific
  • 13.2 RWDC Industries
  • 13.3 Newlight Technologies
  • 13.4 Kaneka Corporation
  • 13.5 Bio-on SpA
  • 13.6 Full Cycle Bioplastics
  • 13.7 Genecis Bioindustries
  • 13.8 Bluepha Co. Ltd.
  • 13.9 TianAn Biologic Materials Co., Ltd.
  • 13.10 Shenzhen Ecomann Biotechnology Co., Ltd.
  • 13.11 PHB Industrial S.A.
  • 13.12 CJ CheilJedang Corp.
  • 13.13 TerraVerdae Bioworks
  • 13.14 Paques Biomaterials
  • 13.15 PolyFerm Canada
  • 13.16 Biomer
  • 13.17 Tepha Inc.
  • 13.18 Yield10 Bioscience, Inc.
  • 13.19 P&G Chemicals
  • 13.20 Mango Materials

List of Tables

  • Table 1 Global Food Waste PHA Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Food Waste PHA Market Outlook, By Type (2024-2032) ($MN)
  • Table 3 Global Food Waste PHA Market Outlook, By Short Chain Length (SCL) PHAs (2024-2032) ($MN)
  • Table 4 Global Food Waste PHA Market Outlook, By Polyhydroxybutyrate (PHB) (2024-2032) ($MN)
  • Table 5 Global Food Waste PHA Market Outlook, By Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) (2024-2032) ($MN)
  • Table 6 Global Food Waste PHA Market Outlook, By Polyhydroxyvalerate (PHV) (2024-2032) ($MN)
  • Table 7 Global Food Waste PHA Market Outlook, By Medium Chain Length (MCL) PHAs (2024-2032) ($MN)
  • Table 8 Global Food Waste PHA Market Outlook, By Polyhydroxyhexanoate (PHHx) (2024-2032) ($MN)
  • Table 9 Global Food Waste PHA Market Outlook, By Polyhydroxyoctanoate (PHO) (2024-2032) ($MN)
  • Table 10 Global Food Waste PHA Market Outlook, By Long Chain Length (LCL) PHAs (2024-2032) ($MN)
  • Table 11 Global Food Waste PHA Market Outlook, By Other Types (2024-2032) ($MN)
  • Table 12 Global Food Waste PHA Market Outlook, By Production Method (2024-2032) ($MN)
  • Table 13 Global Food Waste PHA Market Outlook, By Bacterial Fermentation (2024-2032) ($MN)
  • Table 14 Global Food Waste PHA Market Outlook, By Mixed Microbial Culture (2024-2032) ($MN)
  • Table 15 Global Food Waste PHA Market Outlook, By Enzymatic Conversion (2024-2032) ($MN)
  • Table 16 Global Food Waste PHA Market Outlook, By Methane Fermentation (2024-2032) ($MN)
  • Table 17 Global Food Waste PHA Market Outlook, By Other Production Methods (2024-2032) ($MN)
  • Table 18 Global Food Waste PHA Market Outlook, By Feedstock Source (2024-2032) ($MN)
  • Table 19 Global Food Waste PHA Market Outlook, By Household Food Waste (2024-2032) ($MN)
  • Table 20 Global Food Waste PHA Market Outlook, By Industrial Food Processing Waste (2024-2032) ($MN)
  • Table 21 Global Food Waste PHA Market Outlook, By Agricultural Food Residues (2024-2032) ($MN)
  • Table 22 Global Food Waste PHA Market Outlook, By Restaurant & Catering Waste (2024-2032) ($MN)
  • Table 23 Global Food Waste PHA Market Outlook, By Other Feedstock Sources (2024-2032) ($MN)
  • Table 24 Global Food Waste PHA Market Outlook, By Distribution Channel (2024-2032) ($MN)
  • Table 25 Global Food Waste PHA Market Outlook, By Direct Sales (B2B) (2024-2032) ($MN)
  • Table 26 Global Food Waste PHA Market Outlook, By Distributors & Suppliers (2024-2032) ($MN)
  • Table 27 Global Food Waste PHA Market Outlook, By Online Sales Channels (2024-2032) ($MN)
  • Table 28 Global Food Waste PHA Market Outlook, By Other Distribution Channels (2024-2032) ($MN)
  • Table 29 Global Food Waste PHA Market Outlook, By Application (2024-2032) ($MN)
  • Table 30 Global Food Waste PHA Market Outlook, By Packaging & Food Services (2024-2032) ($MN)
  • Table 31 Global Food Waste PHA Market Outlook, By Sutures & Stitches (2024-2032) ($MN)
  • Table 32 Global Food Waste PHA Market Outlook, By Implants & Scaffolds (2024-2032) ($MN)
  • Table 33 Global Food Waste PHA Market Outlook, By Drug Delivery Systems (2024-2032) ($MN)
  • Table 34 Global Food Waste PHA Market Outlook, By Mulch Films & Plant Pots (2024-2032) ($MN)
  • Table 35 Global Food Waste PHA Market Outlook, By Controlled-Release Fertilizers (2024-2032) ($MN)
  • Table 36 Global Food Waste PHA Market Outlook, By 3D Printing Filaments (2024-2032) ($MN)
  • Table 37 Global Food Waste PHA Market Outlook, By Wastewater Treatment (2024-2032) ($MN)
  • Table 38 Global Food Waste PHA Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 39 Global Food Waste PHA Market Outlook, By End User (2024-2032) ($MN)
  • Table 40 Global Food Waste PHA Market Outlook, By Agriculture (2024-2032) ($MN)
  • Table 41 Global Food Waste PHA Market Outlook, By Healthcare (2024-2032) ($MN)
  • Table 42 Global Food Waste PHA Market Outlook, By Municipal Waste Management (2024-2032) ($MN)
  • Table 43 Global Food Waste PHA Market Outlook, By Industrial Bioplastics (2024-2032) ($MN)
  • Table 44 Global Food Waste PHA Market Outlook, By Other End Users (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.