封面
市场调查报告书
商品编码
1818083

2032 年自动废弃物分类和回收系统市场预测:按组件、废弃物分类类型、技术、最终用户和地区进行的全球分析

Automated Waste Sorting and Recycling Systems Market Forecasts to 2032 - Global Analysis By Component, Waste Type Sorted, Technology, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,全球自动废弃物分类和回收系统市场预计在 2025 年达到 10.4409 亿美元,到 2032 年将达到 18.4819 亿美元,预测期内的复合年增长率为 8.5%。

自动化废弃物分类和回收系统利用人工智慧、电脑视觉和机器人等先进技术来识别、分离和分类废弃物。这些系统透过准确区分塑胶、金属、玻璃和纸张来提高回收效率,减少人为错误和人事费用。自动化提高了产量、材料纯度和操作安全性,同时支援永续的废弃物管理。都市区废弃物产生的增加、严格的环境法规以及人们对循环经济原则日益增长的兴趣正在推动全球市场的扩张。

城市废弃物产生量增加

快速的都市化和不断增长的人均消费量使传统的掩埋和人工分类方法不堪重负,迫切需要提高处理能力和效率。自动化系统提供了管理这些海量废弃物流所需的扩充性、吞吐量和分类精度,使材料回收设施 (MRF) 能够满足严格的回收目标并减少对掩埋的依赖。这些对营运效率和法规遵循的需求直接推动了整个废弃物管理价值链对自动化技术的资本投资。

高资本投入

光学分选机、人工智慧机器人和先进传送系统等先进组件的集成,需要大量的前期成本来采购、安装和整合。此外,对于预算有限的市政废弃物管理专案和规模较小的营运商来说,这种财务障碍尤其具有挑战性,导致投资收益期较长且资金筹措核准复杂。由此产生的高成本结构可能会阻碍潜在的采用者,有利于大型私人企业,并限制价格敏感市场的采用。

开发先进的人工智慧排序演算法

先进人工智慧 (AI) 和机器学习 (ML) 分类演算法的开发带来了巨大的市场机会。这些技术显着提升了系统功能,提高了材料识别的准确性,并能够识别和分离先前难以分类的复杂材料流,例如黑色塑胶和多层包装。此外,持续学习演算法使系统能够适应不断变化的废弃物成分,从而提高输出馏分的纯度和整体回收率。这项创新为技术供应商创造了新的收入来源,并为回收商提供了提高营运效率和经济可行性的途径。

废弃物成分不一致

废弃物类型、大小、形状和含水量的差异会对自动化系统的侦测和机械分离机製造成挑战,导致分类错误、系统堵塞和输出纯度降低。这种差异会降低资本密集系统的营运效率和经济效益。此外,高污染程度(尤其是有机物污染)需要增加预处理和维护,从而增加营运成本,并可能削弱最终用户对自动化解决方案的信心。

COVID-19的影响:

新冠疫情最初扰乱了自动化废弃物分类市场,导致关键硬体组件的供应链延迟,并因封锁和保持社交距离通讯协定减缓了计划部署。工业废弃物和商业废弃物量的急剧下降暂时降低了对分类能力的迫切需求。然而,这场危机也凸显了在废弃物过程中尽量减少人工干预的必要性,并凸显了自动化在卫生方面的益处。这种认知,加上对废弃物回收和建设韧性回收基础设施的重视,正在加速市场復苏和长期应用计画的发展。

预计硬体部分将成为预测期内最大的部分

鑑于强大的实体基础设施是任何自动分类系统的核心基本要求,预计硬体部分将在预测期内占据最大的市场份额。这部分包括光学分类机、空气喷射器、切碎机、打包机和先进的传送系统等重要的资本密集组件,这些组件占初始系统成本的很大一部分。随着市政当局和废弃物管理公司投资建立或升级材料回收设施 (MRF),采购这种耐用、高容量的设备将显着提升该部分的收益,确保其在预测期内保持市场领先地位。

预计预测期内电子废弃物部分将以最高的复合年增长率成长。

由于产品生命週期短和技术快速更新,全球电子废弃物数量不断增加,预计电子废弃物领域将在预测期内实现最高成长率。严格的政府法规和生产者延伸责任 (EPR) 规定,强制要求对电子产品进行妥善回收,以回收贵金属和危险材料,是关键的成长要素。此外,黄金、铜和稀土元素等回收材料具有很高的经济价值,这使得自动分选成为实现电子垃圾处理所需精度的关键且必要的解决方案,从而推动了该领域的大量投资和成长。

占比最大的地区:

由于严格的环境法规、较高的技术采用率以及完善的废弃物管理基础设施,预计北美将在预测期内占据最大的市场份额。主要市场参与者的存在以及透过材料回收设施(MRF)的现代化升级实现高回收率是关键因素。此外,较高的人均废弃物产生量以及公共和私人实体的强大投资能力促进了先进自动分类系统的采购,有助于该地区在整个预测期内巩固其在全球市场的主导地位。

复合年增长率最高的地区:

预计亚太地区在预测期内将呈现最高的复合年增长率,这得益于快速的工业化、都市化以及政府措施为应对日益严峻的废弃物管理挑战而不断推出的倡议。中国、印度和日本等国家已实施严格的废弃物进口禁令和国内回收政策,对现代化废弃物分类基础设施的需求日益迫切。此外,日益增强的环保意识、对智慧城市计划投资的不断增加以及不断扩大的工业基础,正在加速自动化回收技术的普及,使该地区成为全球市场上最具活力的成长区域。

成分

  • 软体
  • 服务

提供免费客製化:

此报告的订阅者可以使用以下免费自订选项之一:

  • 公司简介
    • 对最多三家其他市场公司进行全面分析
    • 主要企业的SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户兴趣对主要国家进行的市场估计、预测和复合年增长率(註:基于可行性检查)
  • 竞争基准化分析
    • 根据产品系列、地理分布和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 初级研究资讯来源
    • 次级研究资讯来源
    • 先决条件

第三章市场走势分析

  • 驱动程式
  • 抑制因素
  • 机会
  • 威胁
  • 技术分析
  • 最终用户分析
  • 新兴市场
  • COVID-19的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球自动废弃物分类与回收系统市场(按组件)

  • 软体
  • 服务

6. 全球自动废弃物分类与回收系统市场(依废弃物类型)

  • 塑胶
  • 纸和纸板
  • 金属(黑色金属和有色金属)
  • 玻璃
  • 电子废弃物
  • 有机废弃物
  • 建筑废弃物

7. 全球自动废弃物分类与回收系统市场(按技术)

  • 机器人分类
  • 光学分选
  • 磁选
  • 涡流分离
  • 机械分选
  • 其他排序技术

8. 全球自动废弃物分类与回收系统市场(依最终用户)

  • 市政回收设施(MRF)
  • 工业和商业设施
  • 电子废弃物回收厂
  • C&D废弃物回收厂
  • 其他最终使用者设施

9. 全球自动废弃物分类与回收系统市场(按地区)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲国家
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与合併
  • 新产品发布
  • 业务扩展
  • 其他关键策略

第十一章 公司概况

  • TOMRA
  • AMCS Group
  • ZenRobotics
  • Bulk Handling Systems
  • Pellenc ST
  • Machinex Industries
  • Steinert
  • REDWAVE
  • SUEZ
  • Veolia
  • AMP Robotics
  • Recycleye
  • Buhler Group
  • Waste Robotics
  • MariMatic
  • Envac
Product Code: SMRC31046

According to Stratistics MRC, the Global Automated Waste Sorting and Recycling Systems Market is accounted for $1044.09 million in 2025 and is expected to reach $1848.19 million by 2032 growing at a CAGR of 8.5% during the forecast period. Automated waste sorting and recycling systems leverage advanced technologies like AI, computer vision, and robotics to identify, separate, and sort waste materials. These systems improve recycling efficiency by accurately distinguishing plastics, metals, glass, and paper, reducing human error and labor costs. Automation enhances throughput, material purity, and operational safety while supporting sustainable waste management. Increasing urban waste generation, strict environmental regulations, and a growing focus on circular economy principles are driving market expansion globally.

Market Dynamics:

Driver:

Increasing urban waste generation

Rapid urbanization and increasing per capita consumption are overwhelming traditional landfill and manual sorting methods, creating an urgent need for higher processing capacity and efficiency. Automated systems provide the requisite scalability, throughput, and sorting precision to manage these voluminous waste streams, enabling material recovery facilities (MRFs) to meet stringent recycling targets and reduce landfill dependency. This demand for operational efficiency and regulatory compliance directly fuels capital investment in automation technologies across the waste management value chain.

Restraint:

High capital investment

The integration of sophisticated components like optical sorters, AI-powered robots, and advanced conveyor systems entails substantial upfront costs for procurement, installation, and integration. Moreover, this financial barrier is particularly challenging for municipal waste management programs and smaller operators with constrained budgets, lengthening the return on investment (ROI) period and complicating funding approvals. Consequently, the high cost structure can deter potential adopters, favoring large-scale private enterprises and limiting penetration in price-sensitive markets.

Opportunity:

Development of advanced AI sorting algorithms

The development of advanced artificial intelligence (AI) and machine learning (ML) sorting algorithms presents a substantial market opportunity. These technologies significantly enhance system capabilities by improving material recognition accuracy, enabling the identification and separation of complex material streams previously difficult to sort, such as black plastics and multi-layered packaging. Additionally, continuous learning algorithms allow systems to adapt to evolving waste compositions, increasing purity of output fractions and overall recovery rates. This innovation creates new revenue streams for technology providers and offers recyclers a path to higher operational efficiency and improved economic viability.

Threat:

Inconsistent waste stream composition

The variability in waste material type, size, shape, and moisture content can challenge the sensing and mechanical separation mechanisms of automated systems, leading to sorting errors, system jams, and reduced output purity. This inconsistency can diminish the operational efficacy and economic returns of these capital-intensive systems. Furthermore, high contamination levels, especially from organic matter, can necessitate increased pre-processing and maintenance, raising operational costs and potentially eroding end-user confidence in automation solutions.

Covid-19 Impact:

The COVID-19 pandemic initially disrupted the automated waste sorting market, causing supply chain delays for critical hardware components and slowing project deployments due to lockdowns and social distancing protocols. A sharp decline in industrial and commercial waste volumes temporarily reduced the immediate demand for sorting capacity. However, the crisis underscored the necessity for minimal human intervention in waste handling, highlighting the hygienic advantages of automation. This awareness, coupled with a rebound in waste generation and a focus on building resilient recycling infrastructure, is accelerating market recovery and long-term adoption plans.

The hardware segment is expected to be the largest during the forecast period

The hardware segment is expected to account for the largest market share during the forecast period attributed to the fundamental requirement for robust physical infrastructure to form the core of any automated sorting system. This segment includes essential capital-intensive components such as optical sorters, air jets, shredders, balers, and advanced conveyor systems, which represent the most significant portion of initial system costs. As municipalities and waste management firms invest in establishing and upgrading their material recovery facilities (MRFs), the procurement of this durable and high-throughput equipment drives substantial segment revenue, ensuring its continued market leadership throughout the forecast period.

The e-waste segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the e-waste segment is predicted to witness the highest growth rate due to the escalating global volume of electronic waste, driven by short product lifecycles and rapid technological obsolescence. Strict government regulations and extended producer responsibility (EPR) mandates compelling the proper recycling of electronics to recover precious metals and hazardous materials are key growth factors. Additionally, the high economic value of recovered materials like gold, copper, and rare-earth elements makes automated sorting a critically profitable and necessary solution for achieving the precision required in e-waste processing, thereby fueling intense investment and growth.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by stringent environmental regulations, high technological adoption rates, and well-established waste management infrastructure. The presence of major market players and a strong focus on achieving high recycling rates through material recovery facility (MRF) modernization are key contributors. Moreover, high per capita waste generation and significant investment capabilities from both public and private entities facilitate the procurement of advanced automated sorting systems, solidifying the region's dominant position in the global market throughout the forecast period.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, fueled by rapid industrialization, urbanization, and growing governmental initiatives to combat overwhelming waste management challenges. Countries like China, India, and Japan are implementing stringent waste import bans and domestic recycling policies, creating a urgent need for modern sorting infrastructure. Furthermore, increasing environmental awareness, rising investments in smart city projects, and the expanding industrial base are driving the accelerated adoption of automated recycling technologies, positioning the region for the most dynamic growth in the global market.

Key players in the market

Some of the key players in Automated Waste Sorting and Recycling Systems Market include TOMRA, AMCS Group, ZenRobotics, Bulk Handling Systems, Pellenc ST, Machinex Industries, Steinert, REDWAVE, SUEZ, Veolia, AMP Robotics, Recycleye, Buhler Group, Waste Robotics, MariMatic and Envac.

Key Developments:

In August 2025, BHS was awarded a contract to design, manufacture, and install the NextGen Integrated Processing System at the Sunnyvale Materials Recovery and Transfer (SMaRT) Station(R).

In May 2025, TOMRA unveiled its Rotake system at the Reuse Economy Expo in Paris. This reverse vending machine (RVM) accepts reusable food containers and refunds deposits instantly to consumers' mobile wallets.

In April 2025, STEINERT expanded its centre of excellence for near-infrared (NIR) technology at its site in Zittau, Germany, to enhance its sensor-based sorting systems.

Components:

  • Software
  • Services

Waste Type Sorted Covered:

  • Plastics
  • Paper and Cardboard
  • Metals (Ferrous and Non-Ferrous)
  • Glass
  • E-waste
  • Organic Waste
  • Construction and Demolition (C&D) Waste

Technologies Covered:

  • Robotic Sorting
  • Optical Sorting
  • Magnetic Separation
  • Eddy Current Separation
  • Mechanical Sorting
  • Other Sorting Technologies

End Users Covered:

  • Municipal Recycling Facilities (MRFs)
  • Industrial and Commercial Facilities
  • E-waste Recycling Plants
  • C&D Waste Recycling Plants
  • Other End User Facilities

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Technology Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Automated Waste Sorting and Recycling Systems Market, By Component

  • 5.1 Introduction
  • 5.2 Software
  • 5.3 Services

6 Global Automated Waste Sorting and Recycling Systems Market, By Waste Type Sorted

  • 6.1 Introduction
  • 6.2 Plastics
  • 6.3 Paper and Cardboard
  • 6.4 Metals (Ferrous and Non-Ferrous)
  • 6.5 Glass
  • 6.6 E-waste
  • 6.7 Organic Waste
  • 6.8 Construction and Demolition (C&D) Waste

7 Global Automated Waste Sorting and Recycling Systems Market, By Technology

  • 7.1 Introduction
  • 7.2 Robotic Sorting
  • 7.3 Optical Sorting
  • 7.4 Magnetic Separation
  • 7.5 Eddy Current Separation
  • 7.6 Mechanical Sorting
  • 7.7 Other Sorting Technologies

8 Global Automated Waste Sorting and Recycling Systems Market, By End User

  • 8.1 Introduction
  • 8.2 Municipal Recycling Facilities (MRFs)
  • 8.3 Industrial and Commercial Facilities
  • 8.4 E-waste Recycling Plants
  • 8.5 C&D Waste Recycling Plants
  • 8.6 Other End User Facilities

9 Global Automated Waste Sorting and Recycling Systems Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 TOMRA
  • 11.2 AMCS Group
  • 11.3 ZenRobotics
  • 11.4 Bulk Handling Systems
  • 11.5 Pellenc ST
  • 11.6 Machinex Industries
  • 11.7 Steinert
  • 11.8 REDWAVE
  • 11.9 SUEZ
  • 11.10 Veolia
  • 11.11 AMP Robotics
  • 11.12 Recycleye
  • 11.13 Buhler Group
  • 11.14 Waste Robotics
  • 11.15 MariMatic
  • 11.16 Envac

List of Tables

  • Table 1 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Software (2024-2032) ($MN)
  • Table 4 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Services (2024-2032) ($MN)
  • Table 5 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Waste Type Sorted (2024-2032) ($MN)
  • Table 6 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Plastics (2024-2032) ($MN)
  • Table 7 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Paper and Cardboard (2024-2032) ($MN)
  • Table 8 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Metals (Ferrous and Non-Ferrous) (2024-2032) ($MN)
  • Table 9 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Glass (2024-2032) ($MN)
  • Table 10 Global Automated Waste Sorting and Recycling Systems Market Outlook, By E-waste (2024-2032) ($MN)
  • Table 11 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Organic Waste (2024-2032) ($MN)
  • Table 12 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Construction and Demolition (C&D) Waste (2024-2032) ($MN)
  • Table 13 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Technology (2024-2032) ($MN)
  • Table 14 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Robotic Sorting (2024-2032) ($MN)
  • Table 15 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Optical Sorting (2024-2032) ($MN)
  • Table 16 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Magnetic Separation (2024-2032) ($MN)
  • Table 17 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Eddy Current Separation (2024-2032) ($MN)
  • Table 18 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Mechanical Sorting (2024-2032) ($MN)
  • Table 19 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Other Sorting Technologies (2024-2032) ($MN)
  • Table 20 Global Automated Waste Sorting and Recycling Systems Market Outlook, By End User (2024-2032) ($MN)
  • Table 21 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Municipal Recycling Facilities (MRFs) (2024-2032) ($MN)
  • Table 22 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Industrial and Commercial Facilities (2024-2032) ($MN)
  • Table 23 Global Automated Waste Sorting and Recycling Systems Market Outlook, By E-waste Recycling Plants (2024-2032) ($MN)
  • Table 24 Global Automated Waste Sorting and Recycling Systems Market Outlook, By C&D Waste Recycling Plants (2024-2032) ($MN)
  • Table 25 Global Automated Waste Sorting and Recycling Systems Market Outlook, By Other End User Facilities (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.