封面
市场调查报告书
商品编码
1871879

全球再生热塑性复合材料市场:预测(至2032年)-依树脂类型、回收技术、纤维类型、製程、应用和地区进行分析

Recyclable Thermoset Composites Market Forecasts to 2032 - Global Analysis By Resin Type, Recycling Technology, Fiber Type, Technology, Application and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球再生热塑性复合材料市场价值将达到 6.7278 亿美元,到 2032 年将达到 11.1619 亿美元,在预测期内复合年增长率为 7.5%。

再生热塑性复合材料正引领环保高性能材料的新时代,它克服了传统热固性材料的关键缺陷:传统热固性材料一旦固化就无法重塑。这些创新材料采用动态化学网路或可逆交联技术,使得热固性材料在其使用寿命结束后可以回收再利用。它们正被越来越多地应用于风力发电机叶片、汽车零件、飞机结构和建筑构件等领域,以最大限度地减少废弃物并降低对原生资源的依赖。儘管可回收利用,但它们仍保持着与传统材料相同的强度、耐热性和长期耐久性。此外,它们的应用还有助于建立循环製造体系,从而在充满挑战的工业环境中实现永续性。

根据 EURECOMP计划摘要,“溶解法可以从纤维增强热固性复合材料中去除高达 90% 的树脂,回收含有有用化学物质的液体,并回收状态良好的玻璃纤维。”

对永续和循环材料的需求日益增长

向环境友善生产的转变正在显着推动再生热塑性复合材料的市场需求。儘管企业面临越来越大的压力,需要减少废弃物并提高可回收性,但传统的固性热塑性材料由于其永久固化的特性,无法满足这些要求。可再生热塑性复合材料利用动态化学键克服了这一限制,使其能够进行再加工和材料再利用。汽车、风能、航太、家用电子电器和建筑等行业正在采用这些复合材料来减少浪费并节省原料。政府的永续性法规、碳减排目标和减少掩埋的努力进一步加速了这些复合材料的普及应用。凭藉其耐久性和报废后的可回收性,这些复合材料符合循环经济原则,并有助于各行业实现其环境目标。

製造成本高且难以大规模生产。

再生热塑性复合材料市场面临高昂的製造成本,难以与传统热固性树脂竞争。生产这类材料需要先进的树脂化学技术、专用催化剂、专用机械和回收基础设施,所有这些都会增加整体生产成本。许多工厂不具备处理可再生热固性系统的能力,迫使企业投入巨资升级设备和调整製程。小型製造商由于资金限制和投资回报期不确定,不愿采用这些系统。原物料供应商短缺也加剧了成本上涨。在规模化生产普及、营运成本降低之前,成本挑战可能会持续阻碍市场扩张。

风力发电及其在大型基础设施中的日益增长的应用

可再生能源和大规模基础设施建设为再生热塑性复合材料提供了巨大的成长机会。传统风力涡轮机叶片和结构部件的报废处理面临诸多挑战,而可再生热固性树脂则能够实现树脂回收和材料再利用。全球对风能的投资以及绿色建设活动的日益普及,正在推动业界对耐用、轻质且可再生替代品的需求。这些复合材料具有耐候性、结构强度和长期可靠性,同时也能最大限度地减少废弃物。永续建筑项目和循环经济政策也进一步促进了它们的应用。随着风电场扩建和新基础设施计划优先考虑环保材料,可回收热固性树脂完全有能力取代传统系统,并支持更环保的工程实践。

现有热塑性塑胶和复合材料的竞争

再生热塑性复合材料的市场正受到可再生热塑性塑胶和生物复合材料的强劲挑战。热塑性塑胶具有成本效益高、易于理解等优点,因为它们遇热软化,无需复杂的化学过程即可轻鬆进行再加工和再利用。生物复合材料利用天然填充材,环境影响小,因此正吸引具有环保意识的製造商的注意。这些竞争材料受益于成熟的供应链、回收设施和技术标准,从而拥有商业性优势。如果可再生热固性塑胶无法展现出更优异的性能或经济效益,客户可能会继续选择热塑性塑胶和生物复合材料,因为这些材料已经能够支持大规模的永续生产。

新冠疫情的感染疾病:

新冠疫情对再生热塑性复合材料市场产生了正面和负面的双重影响。封锁和运输限制导致树脂、固化剂和再生添加剂的供应延迟,造成生产成本上升和交货期延长。包括汽车和航空航太在内的主要感染疾病产业经历了停工和减产,暂时降低了材料消费量。然而,疫情也提升了全球对循环材料和减少废弃物策略的关注度,推动了对可再生热固性材料的研究。风电装置容量的持续成长也为复合材料带来了稳定的需求。随着各产业的復苏和各国政府对永续永续性的重视,预计在后疫情时代,可再生热固性材料解决方案的应用将加速成长。

预计在预测期内,环氧树脂细分市场将占据最大的市场份额。

由于环氧树脂具有优异的强度、韧性、耐环境性和与化学回收的兼容性,预计在预测期内,环氧树脂细分市场将占据最大的市场份额。环氧树脂性能可靠,使用寿命长,广泛应用于风力发电机叶片、飞机结构、汽车零件、电子产品及船舶零件等众多领域。可回收环氧树脂配方允许树脂网络被拆解和再加工,帮助各行业回收高价值部件,而不是将其报废。其可靠的黏合性、热稳定性和抗疲劳性使其在需要长期安全性的应用中具有优势。在永续性倡议日益增多的背景下,环氧基可回收热固性树脂被认为是实现循环生产目标的理想选择。

预计在预测期内,化学回收领域将实现最高的复合年增长率。

预计在预测期内,化学回收领域将呈现最高的成长率,这主要得益于其能够透过化学方法分解固化树脂中的键并回收原料。与机械加工方法(会导致回收产品品质下降)不同,化学技术能够回收性能接近原始等级的纤维和树脂。溶剂处理、热解和催化反应等技术可将固化复合材料转化为可用于製造新零件的可重复利用原料。高性能产业正在采用化学回收技术来减少废弃物并实现循环经济目标。随着环境标准的日益严格以及企业对绿色製造解决方案需求的不断增长,化学回收正成为实现热固性材料真正闭合迴路回收的理想长期解决方案。

占比最大的地区:

由于欧洲地区拥有先进的永续性框架和对循环製造的坚定承诺,预计该地区将在预测期内占据最大的市场份额。该地区的汽车、航太、船舶和风能产业正在积极向可再生材料转型,以满足环境标准和产业认证要求。政府推行的减少废弃物、生态设计和绿色技术投资等倡议,进一步推动了高性能零件中可再生热固性树脂的应用。大学、製造商和复合材料加工商之间的合作,使欧洲成为可扩展回收解决方案的领先中心,确保该地区在可回收热固性技术的工业应用方面保持领先。

年复合成长率最高的地区:

由于製造业的快速成长以及对永续工程的日益重视,预计亚太地区在预测期内将实现最高的复合年增长率。汽车、风力发电、航太和船舶零件製造商正在采用可回收的热固性树脂,以满足环保要求并减少消费后废弃物。政府支持的清洁能源倡议和对轻量材料不断增长的投资进一步推动了市场扩张。该地区的研究机构和复合材料製造商正致力于开发经济实惠的树脂化学技术和高效的化学回收系统,以促进其商业性化应用。在更强有力的永续性政策、基础设施建设和循环製造目标的推动下,亚太地区预计将继续保持可回收热固性材料市场成长最快的地位。

免费客製化服务

订阅本报告的用户可从以下免费自订选项中选择一项:

  • 公司简介
    • 对最多三家其他公司进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域分类
    • 根据客户兴趣对主要国家进行市场估算、预测和复合年增长率分析(註:基于可行性检查)
  • 竞争基准化分析
    • 基于产品系列、地域覆盖和策略联盟对主要企业基准化分析

目录

第一章执行摘要

第二章 引言

  • 概述
  • 相关利益者
  • 分析范围
  • 分析方法
  • 分析材料

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 市场机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方议价能力
  • 替代产品的威胁
  • 新参与企业的威胁
  • 公司间的竞争

5. 全球再生热塑性复合材料市场(依树脂类型划分)

  • 介绍
  • 环氧树脂
  • 不饱和聚酯(UPR)
  • 聚氨酯
  • 苯酚
  • 乙烯基酯
  • 其他树脂类型

6. 全球再生热塑性复合材料市场(依回收技术划分)

  • 介绍
  • 机械回收
  • 化学回收
  • 能源回收

7. 全球再生热塑性复合材料市场(依纤维类型划分)

  • 介绍
  • 玻璃纤维
  • 碳纤维
  • 酰胺纤维
  • 天然纤维

8. 全球再生热塑性复合材料市场(依应用领域划分)

  • 介绍
  • 汽车与运输
  • 航太/国防
  • 建筑和基础设施
  • 电气和电子
  • 可再生能源
  • 消费品

9. 全球再生热塑性复合材料市场(依最终用户划分)

  • 介绍
  • OEM
  • 一级和二级供应商
  • 复合材料零件製造商
  • 回收再利用设施

第十章 全球再生热塑性复合材料市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美洲国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章:主要趋势

  • 合约、商业伙伴关係和合资企业
  • 企业合併(M&A)
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章:公司简介

  • Connora Technologies
  • Covestro
  • Arkema
  • Aditya Birla Chemicals
  • BASF
  • Huntsman Corporation
  • Evonik Industries
  • SABIC
  • Adesso Advanced Materials Inc.
  • Mobius Technologies GmbH
  • Northstar Recycling Company, Inc.
  • Gr3n Recycling Inc
  • The Dow Chemical Company
  • EcoActiv Pty Ltd
  • Mallinda, LLC
Product Code: SMRC32249

According to Stratistics MRC, the Global Recyclable Thermoset Composites Market is accounted for $672.78 million in 2025 and is expected to reach $1116.19 million by 2032 growing at a CAGR of 7.5% during the forecast period. Recyclable thermoset composites introduce a new era of eco-efficient high-performance materials by overcoming the major drawback of standard thermosets, which permanently cure and cannot be reshaped. These innovative materials use dynamic chemical networks or reversible cross-links that allow thermosets to be recovered and reused after product end-life. They are increasingly chosen in wind turbine blades, automotive parts, aircraft structures, and building components to minimize waste and reduce reliance on virgin resources. Despite being recyclable, they retain strength, heat tolerance, and long-term durability similar to traditional options. Their adoption promotes circular manufacturing systems and makes sustainability achievable in demanding industrial environments.

According to the EURECOMP project summary, "solvolysis allows to remove up to 90% of the resin, to retrieve a liquid containing potentially interesting chemicals, and to recover glass fibres with a satisfactory aspect" from fibre-reinforced thermoset composites.

Market Dynamics:

Driver:

Rising demand for sustainable and circular materials

The shift toward environmentally responsible production strongly boosts the recyclable thermoset composites market. Companies are under growing pressure to reduce waste and improve recyclability, which conventional thermosets cannot offer due to permanent curing. Recyclable types overcome this limitation using dynamic chemical bonds that enable reprocessing and material reuse. Sectors such as automotive, wind power, aerospace, consumer electronics, and construction are adopting these composites to lower disposal volumes and conserve raw materials. Government sustainability rules, carbon-reduction targets, and landfill reduction initiatives further accelerate adoption. By providing durability with end-of-life recovery, these composites support circular economy principles and help industries achieve environmental goals.

Restraint:

High production costs and limited large-scale manufacturing

The recyclable thermoset composites market struggles with high manufacturing expenses, making it difficult to compete with traditional thermosets. Producing these materials requires advanced resin chemistries, unique catalysts, specialized machinery, and recycling infrastructure, all of which increase overall production costs. Many factories are not equipped to handle recyclable thermoset systems, forcing companies to invest heavily in equipment upgrades and process adjustments. Smaller manufacturers are hesitant to adopt them due to financial constraints and uncertain return on investment. Limited raw material suppliers also keep costs elevated. Until large-scale production becomes common and expense levels decline, cost challenges will continue affecting market expansion.

Opportunity:

Growing use in wind energy and large-scale infrastructure

Renewable energy and large infrastructure development provide substantial growth prospects for recyclable thermoset composites. Conventional wind blades and structural components generate disposal challenges after retirement, but recyclable thermosets enable resin recovery and material reuse. With global investments in wind power and environmentally responsible construction, industries are searching for durable, lightweight, and recyclable alternatives. These composites offer weather resistance, structural toughness, and long-term reliability while minimizing waste. Sustainable building programs and circular-economy policies further strengthen adoption. As wind farms expand and new infrastructure projects prioritize eco-friendly materials, recyclable thermosets are well-positioned to replace conventional systems and support greener engineering practices.

Threat:

Competition from established thermoplastics and bio-composites

The market for recyclable thermoset composites is threatened by the strong position of recyclable thermoplastics and bio-composites. Thermoplastics are easier to reprocess since they soften under heat and can be reused without complex chemical steps, making them cost-effective and well-understood. Bio-composites attract eco-oriented manufacturers because they utilize natural fillers and deliver lower environmental impact. These competing materials benefit from established supply networks, recycling facilities, and engineering standards, giving them a commercial advantage. If recyclable thermosets fail to demonstrate superior performance or economic benefits, customers may continue selecting thermoplastics or bio-composites that already support large-scale sustainable manufacturing.

Covid-19 Impact:

Covid-19 influenced the recyclable thermoset composites market in both negative and positive ways. Lockdowns and transportation restrictions slowed the supply of resins, curing agents, and recycling additives, increasing production costs and causing delivery delays. Major end-use sectors, including automotive and aviation, experienced shutdowns or reduced manufacturing, temporarily lowering material consumption. At the same time, the pandemic strengthened global interest in circular materials and waste reduction strategies, encouraging research into recyclable thermosets. Wind power installations continued to advance, creating steady composite demand. As industries recover and governments prioritize sustainability, adoption of recyclable thermoset solutions is expected to grow more rapidly in the post-pandemic period.

The epoxy segment is expected to be the largest during the forecast period

The epoxy segment is expected to account for the largest market share during the forecast period due to its excellent strength, toughness, and environmental resistance, combined with compatibility for chemical recycling. It is widely used across wind turbine blades, aircraft structures, automotive parts, electronics, and marine components because it offers dependable performance and long service life. Recyclable epoxy formulations allow the resin network to be broken down and reprocessed, helping industries recycle high-value parts instead of disposing of them. Its reliable adhesion, heat stability, and fatigue resistance give it an advantage in applications that require long-term safety. With growing sustainability commitments, epoxy-based recyclable thermosets are favored for meeting circular production goals.

The chemical recycling segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the chemical recycling segment is predicted to witness the highest growth rate due to its ability to chemically unlock cured resin bonds and restore raw materials. Unlike mechanical methods that create lower-grade recycled products, chemical techniques recover fibers and resins with near-original performance characteristics. Technologies such as solvent-based processing, thermal depolymerization, and catalyst-assisted reactions help convert cured composites into reusable ingredients for new components. High-performance industries adopt chemical recycling to reduce waste and support circular economy targets. As environmental standards increase and companies seek greener manufacturing solutions, chemical recycling becomes an attractive long-term solution for true closed-loop recycling of thermoset materials.

Region with largest share:

During the forecast period, the Europe region is expected to hold the largest market share because of its advanced sustainability framework and strong commitment to circular manufacturing. The region's automotive, aerospace, marine, and wind power sectors actively shift toward recyclable materials to comply with environmental standards and industry certifications. Government initiatives promoting waste minimization, eco-design, and green technology investment further encourage companies to adopt recyclable thermosets in high-performance components. Collaboration between universities, manufacturers, and composite processors positions Europe as a major center for scalable recycling solutions, ensuring the region remains ahead in industrial deployment of recyclable thermoset technologies.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR due to booming production sectors and increasing focus on sustainable engineering. Automotive, wind energy, aerospace components, and marine parts manufacturers are adopting recyclable thermosets to meet environmental expectations and reduce end-of-life waste. Government-backed clean energy initiatives and growing investment in lightweight materials further stimulate market expansion. Research institutions and composite producers in the region are working on affordable resin chemistry and efficient chemical recycling systems, making commercial adoption easier. With stronger sustainability policies, infrastructure development, and circular manufacturing goals, Asia-Pacific continues progressing as the fastest-growing market for recyclable thermoset materials.

Key players in the market

Some of the key players in Recyclable Thermoset Composites Market include Connora Technologies, Covestro, Arkema, Aditya Birla Chemicals, BASF, Huntsman Corporation, Evonik Industries, SABIC, Adesso Advanced Materials Inc., Mobius Technologies GmbH, Northstar Recycling Company, Inc., Gr3n Recycling Inc, The Dow Chemical Company, EcoActiv Pty Ltd and Mallinda, LLC.

Key Developments:

In August 2025, Covestro has signed an agreement with Vencorex Holding SAS, a subsidiary of Thai chemical company PTT Global Chemical Public Company Limited, to acquire two legal entities with stand-alone production sites for HDI derivates in Rayong, Thailand and Freeport, USA. The legal entities and sites were formerly part of the French aliphatics specialist Vencorex.

In June 2025, Aditya Birla Group expands US footprint with acquisition of Cargill's chemical facility. The agreement was finalised through Aditya Birla Chemicals (USA) Inc., a subsidiary of Aditya Birla Chemicals (Thailand) Ltd, further expanding the Indian conglomerate's diverse $15 billion US portfolio that includes Novelis and Birla Carbon.

In March 2025, Arkema signs a new Biomethane supply agreement with ENGIE. Arkema continues its transformation towards a more sustainable industrial model with the signing of a new, eight-year contract with ENGIE for the supply of biomethane for several Bostik sites in France.

Resin Types Covered:

  • Epoxy
  • Unsaturated Polyester (UPR)
  • Polyurethane
  • Phenolic
  • Vinyl Ester
  • Other Resin Types

Recycling Technologies Covered:

  • Mechanical Recycling
  • Chemical Recycling
  • Energy Recovery

Fiber Types Covered:

  • Glass Fiber
  • Carbon Fiber
  • Aramid Fiber
  • Natural Fiber

Applications Covered:

  • Automotive & Transportation
  • Aerospace & Defense
  • Construction & Infrastructure
  • Electrical & Electronics
  • Renewable Energy
  • Marine
  • Consumer Goods

End Users Covered:

  • OEMs
  • Tier 1 & Tier 2 Suppliers
  • Composite Part Manufacturers
  • Recycling & Recovery Facilities

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Recyclable Thermoset Composites Market, By Resin Type

  • 5.1 Introduction
  • 5.2 Epoxy
  • 5.3 Unsaturated Polyester (UPR)
  • 5.4 Polyurethane
  • 5.5 Phenolic
  • 5.6 Vinyl Ester
  • 5.7 Other Resin Types

6 Global Recyclable Thermoset Composites Market, By Recycling Technology

  • 6.1 Introduction
  • 6.2 Mechanical Recycling
  • 6.3 Chemical Recycling
  • 6.4 Energy Recovery

7 Global Recyclable Thermoset Composites Market, By Fiber Type

  • 7.1 Introduction
  • 7.2 Glass Fiber
  • 7.3 Carbon Fiber
  • 7.4 Aramid Fiber
  • 7.5 Natural Fiber

8 Global Recyclable Thermoset Composites Market, By Application

  • 8.1 Introduction
  • 8.2 Automotive & Transportation
  • 8.3 Aerospace & Defense
  • 8.4 Construction & Infrastructure
  • 8.5 Electrical & Electronics
  • 8.6 Renewable Energy
  • 8.7 Marine
  • 8.8 Consumer Goods

9 Global Recyclable Thermoset Composites Market, By End User

  • 9.1 Introduction
  • 9.2 OEMs
  • 9.3 Tier 1 & Tier 2 Suppliers
  • 9.4 Composite Part Manufacturers
  • 9.5 Recycling & Recovery Facilities

10 Global Recyclable Thermoset Composites Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 Connora Technologies
  • 12.2 Covestro
  • 12.3 Arkema
  • 12.4 Aditya Birla Chemicals
  • 12.5 BASF
  • 12.6 Huntsman Corporation
  • 12.7 Evonik Industries
  • 12.8 SABIC
  • 12.9 Adesso Advanced Materials Inc.
  • 12.10 Mobius Technologies GmbH
  • 12.11 Northstar Recycling Company, Inc.
  • 12.12 Gr3n Recycling Inc
  • 12.13 The Dow Chemical Company
  • 12.14 EcoActiv Pty Ltd
  • 12.15 Mallinda, LLC

List of Tables

  • Table 1 Global Recyclable Thermoset Composites Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Recyclable Thermoset Composites Market Outlook, By Resin Type (2024-2032) ($MN)
  • Table 3 Global Recyclable Thermoset Composites Market Outlook, By Epoxy (2024-2032) ($MN)
  • Table 4 Global Recyclable Thermoset Composites Market Outlook, By Unsaturated Polyester (UPR) (2024-2032) ($MN)
  • Table 5 Global Recyclable Thermoset Composites Market Outlook, By Polyurethane (2024-2032) ($MN)
  • Table 6 Global Recyclable Thermoset Composites Market Outlook, By Phenolic (2024-2032) ($MN)
  • Table 7 Global Recyclable Thermoset Composites Market Outlook, By Vinyl Ester (2024-2032) ($MN)
  • Table 8 Global Recyclable Thermoset Composites Market Outlook, By Other Resin Types (2024-2032) ($MN)
  • Table 9 Global Recyclable Thermoset Composites Market Outlook, By Recycling Technology (2024-2032) ($MN)
  • Table 10 Global Recyclable Thermoset Composites Market Outlook, By Mechanical Recycling (2024-2032) ($MN)
  • Table 11 Global Recyclable Thermoset Composites Market Outlook, By Chemical Recycling (2024-2032) ($MN)
  • Table 12 Global Recyclable Thermoset Composites Market Outlook, By Energy Recovery (2024-2032) ($MN)
  • Table 13 Global Recyclable Thermoset Composites Market Outlook, By Fiber Type (2024-2032) ($MN)
  • Table 14 Global Recyclable Thermoset Composites Market Outlook, By Glass Fiber (2024-2032) ($MN)
  • Table 15 Global Recyclable Thermoset Composites Market Outlook, By Carbon Fiber (2024-2032) ($MN)
  • Table 16 Global Recyclable Thermoset Composites Market Outlook, By Aramid Fiber (2024-2032) ($MN)
  • Table 17 Global Recyclable Thermoset Composites Market Outlook, By Natural Fiber (2024-2032) ($MN)
  • Table 18 Global Recyclable Thermoset Composites Market Outlook, By Application (2024-2032) ($MN)
  • Table 19 Global Recyclable Thermoset Composites Market Outlook, By Automotive & Transportation (2024-2032) ($MN)
  • Table 20 Global Recyclable Thermoset Composites Market Outlook, By Aerospace & Defense (2024-2032) ($MN)
  • Table 21 Global Recyclable Thermoset Composites Market Outlook, By Construction & Infrastructure (2024-2032) ($MN)
  • Table 22 Global Recyclable Thermoset Composites Market Outlook, By Electrical & Electronics (2024-2032) ($MN)
  • Table 23 Global Recyclable Thermoset Composites Market Outlook, By Renewable Energy (2024-2032) ($MN)
  • Table 24 Global Recyclable Thermoset Composites Market Outlook, By Marine (2024-2032) ($MN)
  • Table 25 Global Recyclable Thermoset Composites Market Outlook, By Consumer Goods (2024-2032) ($MN)
  • Table 26 Global Recyclable Thermoset Composites Market Outlook, By End User (2024-2032) ($MN)
  • Table 27 Global Recyclable Thermoset Composites Market Outlook, By OEMs (2024-2032) ($MN)
  • Table 28 Global Recyclable Thermoset Composites Market Outlook, By Tier 1 & Tier 2 Suppliers (2024-2032) ($MN)
  • Table 29 Global Recyclable Thermoset Composites Market Outlook, By Composite Part Manufacturers (2024-2032) ($MN)
  • Table 30 Global Recyclable Thermoset Composites Market Outlook, By Recycling & Recovery Facilities (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.