封面
市场调查报告书
商品编码
1876703

电动车电池回收市场预测至2032年:按电池化学成分、来源、回收流程、材料、回收阶段、最终用户和地区分類的全球分析

EV Battery Recycling Market Forecasts to 2032 - Global Analysis By Battery Chemistry, Source, Recycling Process, Material, Recycling Stage, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 200+ Pages | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球电动车电池回收市场价值将达到 64 亿美元,到 2032 年将达到 493 亿美元,在预测期内的复合年增长率为 31.3%。

电动车电池回收是指从废弃或报废的电动车电池(主要是锂离子电池)中回收、加工和提取有价值材料的过程。随着电动车的普及,这些含有锂、钴、镍、锰等关键金属的电池需要永续处置,以防止环境破坏并节省资源。回收过程包括拆解电池、安全提取有害成分,以及回收可用于製造新电池和其他产品的可重复使用金属。这个过程不仅减少了对原材料开采的依赖,还减少了污染,支持了循环经济原则,并加强了电池生产供应链,有助于建立永续且对环境负责的电动车生态系统。

扩大电动车渗透率

全球电动车的日益普及是推动电动汽车电池回收市场的主要动力。随着越来越多的电动车达到使用寿命终点,含有锂、钴、镍和锰等关键金属的废弃锂离子电池需要永续的处置和回收。消费者兴趣的日益增长、政府对电动车购买的激励措施以及环保意识的增强,都促进了对回收基础设施的需求。这一趋势使得安全提取有价值的材料成为可能,从而支持循环经济倡议,并确保新电池生产所需原材料的稳定供应。

高营运成本

高昂的营运成本限制了电动汽车电池回收市场的成长。无论是热处理、湿式处理或直接回收,这些方法都需要专用设备、大量能源投入和熟练人员,从而导致高昂的营运成本。此外,废弃电池的安全处理、运输和拆解也增加了营运成本。这些财务障碍会阻碍市场扩张,尤其对于小规模企业而言。儘管需求不断增长,但建立和营运高效回收设施所需的大量投资仍然是一项重大挑战。

技术进步

技术进步为市场带来了巨大的机会。湿式冶金提取、火法冶金和直接回收等製程创新正在提高效率、回收率和成本效益。人工智慧辅助分类、自动化和绿色实践等新兴技术正在进一步优化营运。这些创新使回收商能够在处理复杂电池化学成分的同时,减少对环境的影响。采用最尖端科技的公司将获得竞争优势,扩大产能,并满足快速发展的电动车生态系统中对永续电池材料日益增长的需求。

复杂电池化学

电池化学成分的多样性和复杂性,包括NMC、LFP和其他锂离子电池类型,对市场成长构成重大威胁。每种化学成分都需要不同的加工技术,这使得标准化和大规模回收变得困难。某些化学成分处理不当还会引发火灾和环境风险。这种复杂性增加了回收商的营运成本和技术挑战,并有可能限制市场扩张的速度。企业必须投资于专用设备和专业技术,才能安全且有效率地回收各种化学成分的电池。

新冠疫情的感染疾病:

新冠疫情导致供应链中断、设施关闭和汽车销售下滑,暂时扰乱了电动车电池回收市场。然而,疫情后的復苏加速了电动车的普及,导致需要回收的电池废弃物数量增加。此外,各公司正在实施更安全的操作规程、数位追踪和自动化措施,以维持业务的连续性。疫情也凸显了建构具有韧性的回收基础设施的必要性,并促使企业投资建设区域性处理设施,以减少对全球供应链的依赖,最终增强了市场的长期成长前景。

预计在预测期内,锂市场将占据最大的市场份额。

由于锂在电动车电池生产中扮演关键角色,预计在预测期内,锂市场将占据最大的市场份额。电动车的日益普及推动了对废弃电池中锂回收的需求。回收的锂可以减少对原生矿开采的依赖,从而降低生产成本并减轻对环境的影响。由于锂是一种有限且具有重要战略意义的资源,专注于高效能锂提取的回收公司将能够从市场扩张中获益,同时为永续的循环电池供应链做出贡献。

预计在预测期内,火法冶金加工领域将实现最高的复合年增长率。

预计在预测期内,火法冶金加工领域将达到最高成长率。该製程采用高温溶解技术,能够有效率地从废弃电池中回收钴、镍、铜等金属。其扩充性、对复杂化学成分的适应能力以及成熟的工业应用经验,使其成为大规模生产的理想选择。随着能源效率和环保法规的不断提升,火法冶金技术有望主导产业成长,并满足全球对再生电池材料日益增长的需求。

占比最大的地区:

由于电动车的日益普及、政府激励措施以及成熟的电池製造地,亚太地区预计将在预测期内占据最大的市场份额。中国、日本和韩国等国家在电池生产方面处于领先地位,并产生大量的废弃锂离子电池。对永续回收的高需求,加上对加工设施的技术投资,使该地区成为全球电动车电池回收的领导者,为市场收入和供应链永续性做出了重大贡献。

复合年增长率最高的地区:

在预测期内,由于电动车渗透率的不断提高和有利的法规结构,北美预计将呈现最高的复合年增长率。对减少环境影响、保障关键电池材料供应以及发展国内回收基础设施的重视将推动市场快速成长。对先进回收设施的投资、公私合营以及战略联盟提高了废弃电池的高效处理能力,使北美成为全球电动车电池回收行业的高成长市场。

免费客製化服务:

购买此报告后,您将获得以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,对主要国家的市场规模和复合年增长率进行估算和预测(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 概述
  • 相关利益者
  • 调查范围
  • 调查方法
    • 资料探勘
    • 数据分析
    • 数据检验
    • 研究途径
  • 研究材料
    • 原始研究资料
    • 次级研究资讯来源
    • 先决条件

第三章 市场趋势分析

  • 介绍
  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的影响

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球电动车电池回收市场(以电池化学成分划分)

  • 介绍
  • 锂离子电池
    • 锂镍锰钴氧化物(NMC)
    • 磷酸锂铁(LFP)
    • 钴酸锂(LCO)
    • 锂镍钴铝氧化物(NCA)
  • 镍氢电池
  • 铅酸电池
  • 其他电池化学

6. 全球电动车电池回收市场(依供应来源划分)

  • 介绍
  • 搭乘用电动车
  • 商用电动车
  • 摩托车
  • 电动巴士和卡车

7. 全球电动车电池回收市场(依回收製程划分)

  • 介绍
  • 火法冶金工艺
  • 湿式冶金工艺
  • 直接回收工艺
  • 混合工艺

第八章 全球电动车电池回收市场(依材料分类)

  • 介绍
  • 其他成分

9. 全球电动车电池回收市场(依回收阶段划分)

  • 介绍
  • 收集和运输
  • 分类和拆卸
  • 材料的提取与提纯

第十章 全球电动车电池回收市场(依最终用户划分)

  • 介绍
  • 家用电器
  • 产业
  • 能源储存系统

第十一章 全球电动车电池回收市场(按地区划分)

  • 介绍
  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十二章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 收购与併购
  • 新产品上市
  • 业务拓展
  • 其他关键策略

第十三章:企业概况

  • Redwood Materials
  • Li-Cycle
  • Umicore
  • Glencore
  • Fortum
  • Veolia
  • Stena Metall
  • Northvolt
  • ACCUREC Recycling GmbH
  • American Battery Technology Company
  • Neometals
  • Ganfeng Lithium
  • Retriev Technologies
  • Cirba Solutions
  • Hydrovolt
Product Code: SMRC32378

According to Stratistics MRC, the Global EV Battery Recycling Market is accounted for $6.4 billion in 2025 and is expected to reach $49.3 billion by 2032 growing at a CAGR of 31.3% during the forecast period. EV Battery Recycling refers to the process of collecting, processing, and recovering valuable materials from spent or end-of-life electric vehicle batteries, primarily lithium-ion types. As EV adoption grows, these batteries, containing critical metals like lithium, cobalt, nickel, and manganese, require sustainable disposal to prevent environmental harm and conserve resources. Recycling involves disassembling batteries, safely extracting hazardous components, and recovering reusable metals for manufacturing new batteries or other products. This process not only reduces dependence on raw material mining but also mitigates pollution, supports circular economy principles, and strengthens the supply chain for battery production, contributing to a sustainable and environmentally responsible EV ecosystem.

Market Dynamics:

Driver:

Rising EV Adoption

The surge in electric vehicle adoption worldwide is a major driver of the EV battery recycling market. As more EVs reach the end of their life cycles, spent lithium-ion batteries containing critical metals like lithium, cobalt, nickel, and manganese require sustainable disposal and recovery. Rising consumer interest, government incentives for EV purchases, and environmental awareness collectively boost the demand for recycling infrastructure. This trend enables the safe extraction of valuable materials, supports circular economy initiatives, and ensures a steady supply of raw materials for new battery production.

Restraint:

High Operational Costs

High operational costs restrain the growth of the EV battery recycling market. Recycling processes, whether pyrometallurgical, hydrometallurgical or direct recycling, require specialized equipment, significant energy input, and skilled personnel, making operations expensive. Additionally, the safe handling, transport, and dismantling of spent batteries add to overhead costs. These financial barriers can limit market expansion, particularly for smaller operators. Despite growing demand, the high investment needed to establish and operate efficient recycling facilities remains a key challenge.

Opportunity:

Advancements in technology

Technological advancements present a significant opportunity in the market. Innovations in processes such as hydrometallurgical extraction, pyrometallurgy, and direct recycling enhance efficiency, recovery rates, and cost-effectiveness. Emerging AI-driven sorting, automation, and environmentally friendly techniques further optimize operations. These innovations enable recyclers to handle complex battery chemistries and reduce environmental impact. Companies adopting cutting-edge technology can gain competitive advantages, expand capacity, and meet the growing demand for sustainable battery materials in a rapidly expanding EV ecosystem.

Threat:

Complex Battery Chemistries

The diversity and complexity of battery chemistries, including NMC, LFP, and other lithium-ion types, pose a significant threat to market growth. Each chemistry requires different processing techniques, making standardization and large-scale recycling difficult. Improper handling of certain chemistries can also pose fire or environmental hazards. This complexity increases operational costs and technical challenges for recyclers, potentially limiting the speed of market expansion. Companies must invest in specialized equipment and expertise to safely and efficiently recycle batteries with varied compositions.

Covid-19 Impact:

The Covid-19 pandemic temporarily disrupted the EV battery recycling market due to supply chain interruptions, facility closures, and reduced vehicle sales. However, post-pandemic recovery has accelerated EV adoption, resulting in increased battery waste requiring recycling. Additionally, companies have adopted safer operational protocols, digital tracking, and automation to maintain continuity. The pandemic highlighted the need for resilient recycling infrastructure and drove investments in local processing facilities to reduce dependence on global supply chains, ultimately reinforcing long-term growth prospects for the market.

The lithium segment is expected to be the largest during the forecast period

The lithium segment is expected to account for the largest market share during the forecast period, due to its critical role in EV battery production. Rising EV adoption increases the demand for lithium recovery from spent batteries. Recovered lithium reduces reliance on raw mining, lowers production costs, and mitigates environmental impact. With lithium being a finite and strategically important resource, recyclers focusing on efficient lithium extraction are well-positioned to benefit from market expansion while contributing to a sustainable, circular battery supply chain.

The pyrometallurgical process segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the pyrometallurgical process segment is predicted to witness the highest growth rate, due to involving high-temperature smelting, enables the recovery of metals like cobalt, nickel, and copper efficiently from spent batteries. Its scalability, suitability for complex chemistries, and established industrial adoption make it attractive for large-scale operations. With ongoing innovations to improve energy efficiency and environmental compliance, pyrometallurgy is poised to dominate growth, meeting rising demand for recycled battery materials globally.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, due to strong EV adoption, government incentives, and established battery manufacturing hubs. Countries like China, Japan, and South Korea lead in battery production, generating significant volumes of spent lithium-ion batteries. High demand for sustainable recycling, coupled with technological investments in processing facilities, positions the region as a global leader in EV battery recycling, contributing substantially to market revenues and supply chain sustainability.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, owing to increasing EV penetration and supportive regulatory frameworks. Strong emphasis on reducing environmental impact, securing critical battery materials, and advancing domestic recycling infrastructure drives rapid market growth. Investments in state-of-the-art recycling facilities, public-private partnerships, and strategic collaborations enhance the region's capacity to process end-of-life batteries efficiently, making North America a high-growth market in the global EV battery recycling industry.

Key players in the market

Some of the key players in EV Battery Recycling Market include Redwood Materials, Li-Cycle, Umicore, Glencore, Fortum, Veolia, Stena Metall, Northvolt, ACCUREC Recycling GmbH, American Battery Technology Company, Neometals, Ganfeng Lithium, Retriev Technologies, Cirba Solutions and Hydrovolt.

Key Developments:

In September 2025, American Battery Technology Company (ABTC) and Call2Recycle have entered a strategic U.S. partnership to scale up recycling of consumer lithium-ion batteries. Through Call2Recycle's drop-off network, end of life batteries will feed into ABTC's closed loop recycling system, enabling recovery of minerals like lithium, cobalt, nickel and manganese and strengthening the domestic critical materials supply chain.

In June 2025, Neometals and Mineral Resources have joined with Rio Tinto under an MOU to advance the ELi Process a novel lithium hydroxide production method using electricity instead of heavy chemical reagents, promising cost and environment efficient refining of battery grade lithium.

Battery Chemistries Covered:

  • Lithium-Ion Batteries
  • Nickel-Metal Hydride Batteries
  • Lead-Acid Batteries
  • Other Battery Chemistries

Sources Covered:

  • Passenger Electric Vehicles
  • Commercial Electric Vehicles
  • Two-Wheelers
  • E-Buses and E-Trucks

Recycling Processes Covered:

  • Pyrometallurgical Process
  • Hydrometallurgical Process
  • Direct Recycling Process
  • Hybrid Processes

Materials Covered:

  • Lithium
  • Cobalt
  • Nickel
  • Manganese
  • Copper
  • Aluminum
  • Iron
  • Other Materials

Recycling Stages Covered:

  • Collection and Transportation
  • Sorting and Dismantling
  • Material Extraction and Refining

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global EV Battery Recycling Market, By Battery Chemistry

  • 5.1 Introduction
  • 5.2 Lithium-Ion Batteries
    • 5.2.1 Lithium Nickel Manganese Cobalt Oxide (NMC)
    • 5.2.2 Lithium Iron Phosphate (LFP)
    • 5.2.3 Lithium Cobalt Oxide (LCO)
    • 5.2.4 Lithium Nickel Cobalt Aluminum Oxide (NCA)
  • 5.3 Nickel-Metal Hydride Batteries
  • 5.4 Lead-Acid Batteries
  • 5.5 Other Battery Chemistries

6 Global EV Battery Recycling Market, By Source

  • 6.1 Introduction
  • 6.2 Passenger Electric Vehicles
  • 6.3 Commercial Electric Vehicles
  • 6.4 Two-Wheelers
  • 6.5 E-Buses and E-Trucks

7 Global EV Battery Recycling Market, By Recycling Process

  • 7.1 Introduction
  • 7.2 Pyrometallurgical Process
  • 7.3 Hydrometallurgical Process
  • 7.4 Direct Recycling Process
  • 7.5 Hybrid Processes

8 Global EV Battery Recycling Market, By Material

  • 8.1 Introduction
  • 8.2 Lithium
  • 8.3 Cobalt
  • 8.4 Nickel
  • 8.5 Manganese
  • 8.6 Copper
  • 8.7 Aluminum
  • 8.8 Iron
  • 8.9 Other Materials

9 Global EV Battery Recycling Market, By Recycling Stage

  • 9.1 Introduction
  • 9.2 Collection and Transportation
  • 9.3 Sorting and Dismantling
  • 9.4 Material Extraction and Refining

10 Global EV Battery Recycling Market, By End User

  • 10.1 Introduction
  • 10.2 Automotive
  • 10.3 Consumer Electronics
  • 10.4 Industrial
  • 10.5 Energy Storage Systems

11 Global EV Battery Recycling Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Redwood Materials
  • 13.2 Li-Cycle
  • 13.3 Umicore
  • 13.4 Glencore
  • 13.5 Fortum
  • 13.6 Veolia
  • 13.7 Stena Metall
  • 13.8 Northvolt
  • 13.9 ACCUREC Recycling GmbH
  • 13.10 American Battery Technology Company
  • 13.11 Neometals
  • 13.12 Ganfeng Lithium
  • 13.13 Retriev Technologies
  • 13.14 Cirba Solutions
  • 13.15 Hydrovolt

List of Tables

  • Table 1 Global EV Battery Recycling Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global EV Battery Recycling Market Outlook, By Battery Chemistry (2024-2032) ($MN)
  • Table 3 Global EV Battery Recycling Market Outlook, By Lithium-Ion Batteries (2024-2032) ($MN)
  • Table 4 Global EV Battery Recycling Market Outlook, By Lithium Nickel Manganese Cobalt Oxide (NMC) (2024-2032) ($MN)
  • Table 5 Global EV Battery Recycling Market Outlook, By Lithium Iron Phosphate (LFP) (2024-2032) ($MN)
  • Table 6 Global EV Battery Recycling Market Outlook, By Lithium Cobalt Oxide (LCO) (2024-2032) ($MN)
  • Table 7 Global EV Battery Recycling Market Outlook, By Lithium Nickel Cobalt Aluminum Oxide (NCA) (2024-2032) ($MN)
  • Table 8 Global EV Battery Recycling Market Outlook, By Nickel-Metal Hydride Batteries (2024-2032) ($MN)
  • Table 9 Global EV Battery Recycling Market Outlook, By Lead-Acid Batteries (2024-2032) ($MN)
  • Table 10 Global EV Battery Recycling Market Outlook, By Other Battery Chemistries (2024-2032) ($MN)
  • Table 11 Global EV Battery Recycling Market Outlook, By Source (2024-2032) ($MN)
  • Table 12 Global EV Battery Recycling Market Outlook, By Passenger Electric Vehicles (2024-2032) ($MN)
  • Table 13 Global EV Battery Recycling Market Outlook, By Commercial Electric Vehicles (2024-2032) ($MN)
  • Table 14 Global EV Battery Recycling Market Outlook, By Two-Wheelers (2024-2032) ($MN)
  • Table 15 Global EV Battery Recycling Market Outlook, By E-Buses and E-Trucks (2024-2032) ($MN)
  • Table 16 Global EV Battery Recycling Market Outlook, By Recycling Process (2024-2032) ($MN)
  • Table 17 Global EV Battery Recycling Market Outlook, By Pyrometallurgical Process (2024-2032) ($MN)
  • Table 18 Global EV Battery Recycling Market Outlook, By Hydrometallurgical Process (2024-2032) ($MN)
  • Table 19 Global EV Battery Recycling Market Outlook, By Direct Recycling Process (2024-2032) ($MN)
  • Table 20 Global EV Battery Recycling Market Outlook, By Hybrid Processes (2024-2032) ($MN)
  • Table 21 Global EV Battery Recycling Market Outlook, By Material (2024-2032) ($MN)
  • Table 22 Global EV Battery Recycling Market Outlook, By Lithium (2024-2032) ($MN)
  • Table 23 Global EV Battery Recycling Market Outlook, By Cobalt (2024-2032) ($MN)
  • Table 24 Global EV Battery Recycling Market Outlook, By Nickel (2024-2032) ($MN)
  • Table 25 Global EV Battery Recycling Market Outlook, By Manganese (2024-2032) ($MN)
  • Table 26 Global EV Battery Recycling Market Outlook, By Copper (2024-2032) ($MN)
  • Table 27 Global EV Battery Recycling Market Outlook, By Aluminum (2024-2032) ($MN)
  • Table 28 Global EV Battery Recycling Market Outlook, By Iron (2024-2032) ($MN)
  • Table 29 Global EV Battery Recycling Market Outlook, By Other Materials (2024-2032) ($MN)
  • Table 30 Global EV Battery Recycling Market Outlook, By Recycling Stage (2024-2032) ($MN)
  • Table 31 Global EV Battery Recycling Market Outlook, By Collection and Transportation (2024-2032) ($MN)
  • Table 32 Global EV Battery Recycling Market Outlook, By Sorting and Dismantling (2024-2032) ($MN)
  • Table 33 Global EV Battery Recycling Market Outlook, By Material Extraction and Refining (2024-2032) ($MN)
  • Table 34 Global EV Battery Recycling Market Outlook, By End User (2024-2032) ($MN)
  • Table 35 Global EV Battery Recycling Market Outlook, By Automotive (2024-2032) ($MN)
  • Table 36 Global EV Battery Recycling Market Outlook, By Consumer Electronics (2024-2032) ($MN)
  • Table 37 Global EV Battery Recycling Market Outlook, By Industrial (2024-2032) ($MN)
  • Table 38 Global EV Battery Recycling Market Outlook, By Energy Storage Systems (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.