封面
市场调查报告书
商品编码
1889284

资料工程市场预测至 2032 年:按组件、部署方式、资料类型、最终用户和地区分類的全球分析

Data Engineering Market Forecasts to 2032 - Global Analysis By Component (Tools & Platforms and Services), Deployment, Data Type, End User and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 预测,全球数据工程市场规模预计将在 2025 年达到 915.4 亿美元,并在 2032 年达到 2,491.8 亿美元,预测期内复合年增长率 (CAGR) 为 15.38%。数据工程专注于开发和管理用于收集、处理和组织数据的系统,供组织内部使用。这包括建立可扩展的资料管道、连接多个资料来源、维护资料准确性以及确保安全高效的储存。资料工程师利用云端技术、巨量资料框架和 ETL 技术来确保资料的可存取性和可靠性。他们的努力使分析师、资料科学家和机器学习工具能够利用干净、结构化的资讯。透过提高资料可靠性、改善工作流程和确保强有力的管治,资料工程使企业能够将复杂的资料集转化为策略洞察,从而支援更快的决策和长期的业务成长。

根据美国劳工统计局(BLS)的数据,包括数据工程在内的电脑和资讯科技职业,预计在2021年至2031年间就业成长率将达到15%,远高于所有职业的平均水准。这项预测也支撑了巨量资料母市场的扩张。

巨量资料和即时分析日益普及

巨量资料产生的快速成长和对即时洞察日益增长的需求正在推动数据工程市场的发展。现代企业透过连网设备、线上互动和内部系统产生大量、复杂的资料流。为了支援即时仪錶板、预测智慧和营运分析,企业需要强大的资料管道、可扩展的资料框架和可靠的处理平台。数据工程确保了银行、电子商务和医疗保健等各个行业能够快速、准确且易于存取的资讯。随着企业追求更高的应对力和数据驱动的决策,对高效能资料生态系统、增强的分析能力和即时资料可用性的需求不断增长,推动市场的持续扩张。

数据整合和管理的高度复杂性

资料工程市场成长面临的关键挑战之一是整合和管理多样化资料集的困难。现代企业需要处理大量非结构化、半结构化和结构化数据,这些数据由旧有系统、云端平台、连网设备和企业应用程式产生。协调这些资料来源、确保资料一致性并防止资料碎片化需要先进的工程技术和复杂的工具。许多组织面临持续的资料孤岛、互通性差和资料品质问题,这些都阻碍了高效率的分析。即时处理增加了额外的复杂性,需要持续的同步和可靠性。这些挑战会增加营运成本、延长实施週期并降低资料工程计划的整体效率。

对云端原生、无伺服器资料基础设施的需求日益增长

企业对云端原生、无伺服器架构的日益青睐,为资料工程市场创造了巨大的机会。为了获得更高的柔软性、更快的可扩充性和更简化的操作,企业正在迁移到 Azure Synapse、Google Cloud Dataflow 和 AWS Lambda 等平台。这些系统提供自动扩展、即时处理能力,并可轻鬆整合分析和 BI 工具。随着数位转型的加速,企业对云端驱动的资料管道和现代资料框架的需求也日益增长。能够以低维护成本处理大规模资料集是无伺服器环境的一大优势。这种向可扩展、经济高效的云端解决方案的转变,大大拓展了高阶资料工程服务和工具的发展机会。

科技快速变化和工具过时

数据生态系统的快速创新带来了重大威胁,因为现有工具和技术可能很快就会过时。新的平台、处理引擎和云端原生架构层出不穷,迫使企业不断更新技能、重构流程并实现系统现代化。频繁的迁移会增加营运成本、降低工作流程稳定性并带来整合方面的挑战。许多公司缺乏足够的资源来跟上科技发展的脚步。这种持续的升级压力会阻碍对数据工程的长期投资。因此,对未来解决方案的不确定性会降低采用率,并阻碍资料工程专案的整体发展。

新冠疫情的影响:

新冠疫情重塑了数据工程市场,加速了数位化技术的应用,并凸显了对可靠数据基础设施的需求。随着远距办公的普及,企业加大了对云端基础系统、即时分析和自动化数据管道的投资,以维持营运。医疗保健、线上零售和金融服务等行业需要更快地获得洞察,以应对不断变化的客户需求和疫情带来的衝击。儘管经济的不确定性导致一些企业暂时削减了IT支出,但却提高了它们对数据驱动决策的整体依赖性。此次危机凸显了扩充性且具弹性的数据系统的重要性,加速了现代化进程,并增强了对先进数据工程解决方案的长期需求。

预计在预测期内,云端原生细分市场将占据最大的市场份额。

预计在预测期内,云端原生解决方案将占据最大的市场份额,因为企业越来越依赖按需扩充性、经济高效的资源利用以及根据需要自动扩展或缩减基础设施的能力。微软 Azure、Google云端和 AWS 等云端服务供应商提供託管服务、自动扩展和付费使用制,从而最大限度地减少了对大规模资本投资和维运的需求。云端原生环境能够快速部署资料撷取、串流管道和分析工作流程。这种敏捷性和弹性使得云端原生解决方案优于本地部署和混合模式。

预计在预测期内,零售和电子商务领域的复合年增长率将最高。

预计在预测期内,零售和电子商务领域将保持最高的成长率,这主要得益于网路购物的成长、数位互动的拓展以及对更深入的客户洞察的需求。该领域的企业依靠即时数据处理、可扩展的数据管道和高级分析技术来支援行销、库存管理和个人化客户参与。数位支付、自动化平台和客户行为追踪的日益普及,推动了对先进数据工程系统的需求。随着建议工具、诈欺分析和预测需求模型的广泛应用,零售商需要强大的数据基础设施来管理大量数据,这使得该领域成为市场中成长最快的领域。

占比最大的地区:

预计北美将在预测期内占据最大的市场份额,这得益于其先进的IT基础设施、广泛的云端整合以及对分析和人工智慧的重视。该地区受惠于众多科技巨头、主流云端平台以及企业内部先进的数据策略。银行、医疗保健和零售等关键产业正在持续推动对数据工程计划的需求。此外,法规结构、高素质的劳动力以及创新文化也巩固了北美的领先地位。所有这些因素共同造就了北美在数据工程领域中最大、最具影响力的市场地位。

复合年增长率最高的地区:

亚太地区预计将在预测期内实现最高的复合年增长率,这主要得益于强劲的数位转型、日益增强的云端整合以及人工智慧驱动系统的广泛应用。中国、印度、日本和韩国等国家正持续增加对数据平台、自动化工具和智慧分析的投资。电子商务、数位支付、电信网路和智慧产业计划的快速发展,推动了可扩展数据管道和即时处理的需求。该地区充满活力的创新环境,以及政府主导的数位化倡议,进一步加速了相关技术的应用。因此,亚太地区预计将继续保持资料工程生态系统成长最快的地位。

免费客製化服务:

购买此报告的客户可以选择以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,对主要国家进行市场估算和预测,并计算复合年增长率(註:可行性需确认)。
  • 竞争基准化分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟基准化分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

5. 全球资料工程市场(按组件划分)

  • 工具和平台
    • ETL/ELT 工具
    • 资料编配与工作流程管理
    • 资料湖/湖屋平台
    • 资料仓储
    • 串流和即时处理框架
    • 数据品质与管治工具
  • 服务
    • 咨询顾问
    • 整合与实施
    • 託管服务

第六章 全球资料工程市场依部署类型划分

  • 本地部署
  • 云端原生
  • 杂交种

7. 全球资料工程市场(按资料类型划分)

  • 结构化
  • 半结构化
  • 非结构化

第八章 全球资料工程市场(依最终用户划分)

  • BFSI
  • 电讯和资讯技术
  • 医疗/製药
  • 零售与电子商务
  • 製造业和能源
  • 政府/公共部门

9. 全球资料工程市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 南美洲其他地区
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章 企业概况

  • Complere Infosystem
  • Manthan
  • Xebia
  • Quantiphi
  • Datamatics
  • Tredence
  • Bristlecone
  • Kanerika
  • V2Soft
  • Infostretch
  • Impetus Technologies
  • ThoughtWorks
  • Accenture
  • OptiSol Business Solutions
  • Fivetran
Product Code: SMRC32744

According to Stratistics MRC, the Global Data Engineering Market is accounted for $91.54 billion in 2025 and is expected to reach $249.18 billion by 2032 growing at a CAGR of 15.38% during the forecast period. Data engineering focuses on developing and managing the systems that collect, process, and organize data for organizational use. It includes building scalable pipelines, connecting multiple data sources, maintaining accuracy, and ensuring secure and efficient storage. Data engineers utilize cloud technologies, big data frameworks, and ETL methodologies to keep data accessible and trustworthy. Their efforts enable analysts, data scientists, and machine learning tools to work with clean, structured information. By enhancing data reliability, improving workflows, and ensuring strong governance, data engineering empowers companies to turn complex datasets into strategic insights that support faster decisions and long-term business growth.

According to the U.S. Bureau of Labor Statistics (BLS), employment of computer and information technology occupations-which includes data engineering roles-is projected to grow 15% from 2021 to 2031, much faster than the average for all occupations. This projection underscores the parent market's expansion.

Market Dynamics:

Driver:

Growing adoption of big data & real-time analytics

The surge in big data creation and the growing need for real-time insights significantly fuel the data engineering market. Enterprises today generate huge streams of complex data from connected devices, online interactions, and internal systems. To support real-time dashboards, predictive intelligence, and operational analytics, companies require strong pipelines, scalable data frameworks, and dependable processing platforms. Data engineering ensures fast, clean, and accessible information for various sectors including banking, e-commerce, and healthcare. As organizations strive for better responsiveness and data-driven decisions, demand rises for high-performing data ecosystems, enhanced analytics capabilities, and instant data availability, pushing continued market expansion.

Restraint:

High complexity of data integration & management

One of the major restraints slowing the data engineering market is the difficulty of integrating and managing highly diverse datasets. Companies today handle large volumes of unstructured, semi-structured, and structured information coming from legacy systems, cloud platforms, connected devices, and enterprise applications. Coordinating these data sources, ensuring uniformity, and preventing fragmentation requires advanced engineering skills and sophisticated tools. Many organizations face persistent data silos, poor interoperability, and quality issues that hinder efficient analytics. Real-time processing adds further complications, demanding continuous synchronization and reliability. These challenges increase operational costs, extend implementation timelines, and reduce the overall efficiency of data engineering projects.

Opportunity:

Rising demand for cloud-native & serverless data infrastructure

The growing preference for cloud-native and serverless architectures is creating major opportunities in the data engineering market. Companies are moving to platforms such as Azure Synapse, Google Cloud Dataflow, and AWS Lambda to achieve greater flexibility, faster scalability, and simplified operations. These systems provide automated scaling, real-time processing capabilities, and easy integration with analytics and BI tools. As digital transformation accelerates, enterprises increasingly require cloud-driven pipelines and modern data frameworks. The ability to handle large datasets with reduced maintenance effort makes serverless environments highly attractive. This shift toward scalable, cost-efficient cloud solutions significantly boosts opportunities for advanced data engineering services and tools.

Threat:

Rapid technological changes & tool obsolescence

The rapid pace of innovation in the data ecosystem creates a major threat, as existing tools and technologies can become obsolete quickly. New platforms, processing engines, and cloud-native architectures appear regularly, requiring organizations to update skills, rebuild pipelines, and modernize systems. Frequent transitions increase operational costs, reduce workflow stability, and cause integration challenges. Many companies lack the resources to adopt new technologies at the same speed they evolve. This constant pressure to upgrade may discourage long-term data engineering investments. As a result, uncertainty around future-proofing solutions can slow adoption rates and hinder the overall growth of data engineering initiatives.

Covid-19 Impact:

COVID-19 reshaped the data engineering market by driving faster adoption of digital technologies and expanding the need for reliable data infrastructure. With remote work becoming widespread, businesses invested more in cloud-based systems, real-time analytics, and automated data pipelines to maintain operations. Sectors like healthcare, online retail, and financial services required quicker insights to manage evolving customer demands and pandemic-related disruptions. Although economic uncertainty led some firms to reduce IT spending temporarily, the overall dependence on data-driven decision-making increased. The crisis highlighted the importance of scalable, resilient data systems, ultimately accelerating modernization efforts and strengthening long-term demand for advanced data engineering solutions.

The cloud-native segment is expected to be the largest during the forecast period

The cloud-native segment is expected to account for the largest market share during the forecast period. This is because companies increasingly rely on its on-demand scalability, cost-effective usage, and the ability to grow or shrink infrastructure automatically as needed. Cloud providers such as Microsoft Azure, Google Cloud, and AWS provide managed services, automated scaling, and pay-per-use billing, which minimize the need for large capital investments and operational upkeep. With cloud-native setups, businesses can quickly deploy data ingestion, streaming pipelines, and analytics workflows. This agility and resilience make cloud-native the preferred choice over on-site or hybrid models.

The retail & e-commerce segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the retail & e-commerce segment is predicted to witness the highest growth rate, fueled by rising online shopping, expanding digital interactions, and the need for deeper customer insights. Companies in this sector depend on real-time data processing, scalable pipelines, and advanced analytics to enhance marketing, inventory management, and personalized engagement. Increasing use of digital payments, automation platforms, and customer activity tracking boosts the demand for sophisticated data engineering systems. With growing adoption of recommendation tools, fraud analytics, and predictive demand models, retailers require robust data infrastructures to manage high data volumes, making this segment the fastest expanding in the market.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, owing to its advanced IT infrastructure, widespread cloud integration, and strong commitment to analytics and AI. This region benefits from a rich blend of technology giants, major cloud platforms, and sophisticated data strategies within enterprises. Key industries-like banking, healthcare, and retail-fuel continuous demand for data engineering projects. Additionally, regulatory frameworks, a well-trained workforce, and a culture of innovation reinforce North America's leadership. All these elements combine to make North America the largest and most influential region in the data engineering landscape.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR, driven by strong digital transformation, rising cloud integration, and increasing use of AI-driven systems. Nations like China, India, Japan, and South Korea continue to expand investments in data platforms, automation tools, and intelligent analytics. Rapid expansion in e-commerce, digital payments, telecom networks, and smart industry projects boosts the need for scalable data pipelines and real-time processing. The region's thriving innovation landscape, combined with government-backed digital initiatives, accelerates adoption even further. As a result, APAC is set to remain the fastest-growing region in the data engineering ecosystem.

Key players in the market

Some of the key players in Data Engineering Market include Complere Infosystem, Manthan, Xebia, Quantiphi, Datamatics, Tredence, Bristlecone, Kanerika, V2Soft, Infostretch, Impetus Technologies, ThoughtWorks, Accenture, OptiSol Business Solutions and Fivetran.

Key Developments:

In September 2025, Quantiphi and an Amazon Web Services (AWS) Premier Tier Services Partner announced the expansion of its Strategic Collaboration Agreement (SCA) with AWS, strengthening the relationship and further enabling the companies to deliver enterprise-ready generative AI solutions at scale.

In August 2025, Accenture has agreed to acquire CyberCX, a leading privately-owned cybersecurity services provider serving both private and public sector organizations across Australia, New Zealand and internationally. The move represents Accenture's largest cybersecurity acquisition to date and will significantly bolster Accenture's cybersecurity services in Asia Pacific.

In February 2024, Xebia has launched a new office in Riyadh, the firm's second in the Middle East. Marking its entry in the Saudi market, Xebia's latest office is located at AstroLabs, a technology hub and ecosystem in Riyadh's booming Al Malqa district. The new office is the 28th worldwide for the Dutch-origin consulting group.

Components Covered:

  • Tools & Platforms
  • Services

Deployments Covered:

  • On-premises
  • Cloud-native
  • Hybrid

Data Types Covered:

  • Structured
  • Semi-structured
  • Unstructured

End Users Covered:

  • BFSI
  • Telecom & IT
  • Healthcare & Pharma
  • Retail & E-commerce
  • Manufacturing & Energy
  • Government & Public Sector

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Data Engineering Market, By Component

  • 5.1 Introduction
  • 5.2 Tools & Platforms
    • 5.2.1 ETL / ELT Tools
    • 5.2.2 Data Orchestration & Workflow Management
    • 5.2.3 Data Lakes & Lakehouse Platforms
    • 5.2.4 Data Warehouses
    • 5.2.5 Streaming & Real?time Processing Frameworks
    • 5.2.6 Data Quality & Governance Tools
  • 5.3 Services
    • 5.3.1 Consulting & Advisory
    • 5.3.2 Integration & Implementation
    • 5.3.3 Managed Services

6 Global Data Engineering Market, By Deployment

  • 6.1 Introduction
  • 6.2 On-premises
  • 6.3 Cloud-native
  • 6.4 Hybrid

7 Global Data Engineering Market, By Data Type

  • 7.1 Introduction
  • 7.2 Structured
  • 7.3 Semi-structured
  • 7.4 Unstructured

8 Global Data Engineering Market, By End User

  • 8.1 Introduction
  • 8.2 BFSI
  • 8.3 Telecom & IT
  • 8.4 Healthcare & Pharma
  • 8.5 Retail & E-commerce
  • 8.6 Manufacturing & Energy
  • 8.7 Government & Public Sector

9 Global Data Engineering Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Complere Infosystem
  • 11.2 Manthan
  • 11.3 Xebia
  • 11.4 Quantiphi
  • 11.5 Datamatics
  • 11.6 Tredence
  • 11.7 Bristlecone
  • 11.8 Kanerika
  • 11.9 V2Soft
  • 11.10 Infostretch
  • 11.11 Impetus Technologies
  • 11.12 ThoughtWorks
  • 11.13 Accenture
  • 11.14 OptiSol Business Solutions
  • 11.15 Fivetran

List of Tables

  • Table 1 Global Data Engineering Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Data Engineering Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Data Engineering Market Outlook, By Tools & Platforms (2024-2032) ($MN)
  • Table 4 Global Data Engineering Market Outlook, By ETL / ELT Tools (2024-2032) ($MN)
  • Table 5 Global Data Engineering Market Outlook, By Data Orchestration & Workflow Management (2024-2032) ($MN)
  • Table 6 Global Data Engineering Market Outlook, By Data Lakes & Lakehouse Platforms (2024-2032) ($MN)
  • Table 7 Global Data Engineering Market Outlook, By Data Warehouses (2024-2032) ($MN)
  • Table 8 Global Data Engineering Market Outlook, By Streaming & Real?time Processing Frameworks (2024-2032) ($MN)
  • Table 9 Global Data Engineering Market Outlook, By Data Quality & Governance Tools (2024-2032) ($MN)
  • Table 10 Global Data Engineering Market Outlook, By Services (2024-2032) ($MN)
  • Table 11 Global Data Engineering Market Outlook, By Consulting & Advisory (2024-2032) ($MN)
  • Table 12 Global Data Engineering Market Outlook, By Integration & Implementation (2024-2032) ($MN)
  • Table 13 Global Data Engineering Market Outlook, By Managed Services (2024-2032) ($MN)
  • Table 14 Global Data Engineering Market Outlook, By Deployment (2024-2032) ($MN)
  • Table 15 Global Data Engineering Market Outlook, By On-premises (2024-2032) ($MN)
  • Table 16 Global Data Engineering Market Outlook, By Cloud-native (2024-2032) ($MN)
  • Table 17 Global Data Engineering Market Outlook, By Hybrid (2024-2032) ($MN)
  • Table 18 Global Data Engineering Market Outlook, By Data Type (2024-2032) ($MN)
  • Table 19 Global Data Engineering Market Outlook, By Structured (2024-2032) ($MN)
  • Table 20 Global Data Engineering Market Outlook, By Semi-structured (2024-2032) ($MN)
  • Table 21 Global Data Engineering Market Outlook, By Unstructured (2024-2032) ($MN)
  • Table 22 Global Data Engineering Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global Data Engineering Market Outlook, By BFSI (2024-2032) ($MN)
  • Table 24 Global Data Engineering Market Outlook, By Telecom & IT (2024-2032) ($MN)
  • Table 25 Global Data Engineering Market Outlook, By Healthcare & Pharma (2024-2032) ($MN)
  • Table 26 Global Data Engineering Market Outlook, By Retail & E-commerce (2024-2032) ($MN)
  • Table 27 Global Data Engineering Market Outlook, By Manufacturing & Energy (2024-2032) ($MN)
  • Table 28 Global Data Engineering Market Outlook, By Government & Public Sector (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.