封面
市场调查报告书
商品编码
1896162

可再生能源电力电子市场预测至2032年:按组件、再生能源来源、材料类型、最终用户和地区分類的全球分析

Power Electronics for Renewables Market Forecasts to 2032 - Global Analysis By Component (Inverters, Converters, Rectifiers, Power Modules, Control Units and Switching Devices), Renewable Source, Material Type, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的一项研究,预计到 2025 年,全球可再生能源电力电子市场规模将达到 152 亿美元,到 2032 年将达到 217 亿美元,预测期内复合年增长率为 5.2%。

可再生能源电力电子技术是指用于转换、控制和优化太阳能、风能和能源储存系统等再生能源来源发电的先进电子系统。这些解决方案包括逆变器、转换器和控制器,用于管理电压、电流和频率,确保电网相容性和高效的能源传输。电力电子技术广泛应用于公用事业、商业和住宅设施,可确保电网稳定性、最大限度地提高能源产量、支持智慧电网并促进间歇性可再生能源的可靠併网。

加速全球可再生能源的采用

可再生能源电力电子市场的主要驱动力是全球可再生能源的加速普及。世界各国政府都在大力推广太阳能、风能和混合能源计划,以减少碳排放并实现能源转型目标。有利的政策、可再生能源设备成本的下降以及不断增长的电力需求,都推动了对高效逆变器、转换器和电源管理系统的需求。这些组件能够确保电网相容性、能源优化和稳定的电力传输,从而直接支援大规模可再生能源装置容量的扩张。

高成本组件系统

高成本的组件和系统成本是限制可再生能源电力电子市场发展的主要因素。先进的功率半导体、宽能带隙材料和复杂的控制系统都会增加初始投资。新兴经济体对成本高度敏感,计划开发商往往面临预算限制,延缓了先进电力电子技术的应用。此外,安装的复杂性和维护成本进一步增加了总拥有成本,儘管这些技术具有长期的效率优势,但限制了它们在小规模可再生能源计划和分散式能源系统中的应用。

全电网储能集成

电网级储能併网为可再生能源电力电子市场带来了巨大的成长机会。可再生能源发电本身俱有间歇性,因此高效的电力电子技术对于管理储能係统与电网之间的双向能量流动至关重要。为了确保电网稳定性和尖峰负载管理,电力公司正加大对电池能源储存系统(BESS)的投资,并采用先进的转换器和逆变器。这一趋势将显着提升公用事业规模可再生能源设施对高性能电力电子解决方案的需求。

供应炼和原料波动

供应链中断和原材料价格波动对可再生能源电力电子市场构成显着威胁。碳化硅、氮化镓、铜和稀土元素等关键材料极易受到价格波动和地缘政治风险的影响。这种不确定性推高了製造成本,并影响了生产进度。此外,对少数关键零件供应商的依赖会限制规模化生产。此类波动会挤压利润空间,为可再生能源计划开发商带来不确定性,减缓市场成长。

新冠疫情的影响

新冠感染疾病对可再生能源电力电子市场造成了短期衝击。生产停工、物流延误和劳动力短缺暂时延缓了可再生能源计划的实施。然而,在疫情后的復苏阶段,各国政府推出了绿色奖励策略,加速了清洁能源投资。对能源安全和永续性的日益重视提振了对可再生能源设备及其配套电力电子产品的需求。因此,在长期脱碳努力和基础设施投资的支撑下,市场强劲反弹。

预计在预测期内,功率模组细分市场将占据最大的市场份额。

由于功率模组在高效功率转换和温度控管方面发挥关键作用,预计在预测期内,功率模组将占据最大的市场份额。功率模组将多个功率半导体装置整合到一个紧凑的单元中,从而提高了性能和可靠性。这些模组广泛应用于太阳能和风能逆变器和转换器中,能够满足高电压和大电流的需求。功率模组的可扩展性、高效率和较低的系统复杂性使其成为可再生能源装置的首选。

预计在预测期内,太阳能发电领域将实现最高的复合年增长率。

预计在预测期内,太阳能发电领域将实现最高成长率,这主要得益于大型太阳能电站和屋顶太阳能发电装置的快速扩张。太阳能发电成本的下降、政府的支持措施以及企业对可再生能源的采购,正在加速全球太阳能的普及。电力电子技术在最大化太阳能係统的能量输出、确保电网相容性以及应对电力波动方面发挥关键作用。对太阳能电站和分散式发电的投资不断增加,推动了对先进电力电子解决方案的需求。

比最大的地区

预计亚太地区将在预测期内占据最大的市场份额,这主要得益于中国、印度、日本和东南亚大规模可再生能源装置容量的成长。强而有力的政府措施、不断扩大的製造地以及日益增长的电力需求,都在推动太阳能和风能计划的广泛应用。该地区具有成本竞争力的製造业生态系统以及对能源转型的日益重视,进一步促进了可再生电力电子产品在大规模分散式能源系统中的应用。

年复合成长率最高的地区

预计北美地区在预测期内将呈现最高的复合年增长率,这主要得益于其积极的可再生能源目标和电网现代化倡议。对太阳能、风能和储能计划的投资不断增长,推动了对先进电力电子产品的需求。有利的法规结构、税收优惠以及功率半导体领域的技术创新进一步促进了市场成长。对电网柔软性、韧性和脱碳的日益增长的需求,使北美成为可再生能源电力电子产品的高成长地区。

免费客製化服务

购买此报告的客户可享有以下免费自订选项之一:

  • 公司概况
    • 最多三家新增市场参与企业进行全面分析
    • 主要参与企业(最多3家公司)的SWOT分析
  • 区域细分
    • 根据客户要求,对主要国家进行市场估算和预测,并计算复合年增长率(註:可行性需确认)。
  • 竞争基准化分析
    • 从产品系列、地域覆盖范围和策略联盟等方面对主要参与企业基准化分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

第五章 全球可再生能源电力电子市场(按组件划分)

  • 逆变器
  • 转换器
  • 整流器
  • 电源模组
  • 控制单元
  • 交换器件

6. 全球可再生能源电力电子市场(依再生能源来源)

  • 太阳能发电
  • 风力发电
  • 水力发电
  • 能源储存系统
  • 混合可再生能源系统
  • 海洋能源

7. 全球可再生能源电力电子市场(依材料类型划分)

  • 硅基元件
  • 碳化硅(SiC)装置
  • 氮化镓(GaN)元件
  • 混合半导体模组
  • 宽能带隙功率元件

第八章:全球可再生能源电力电子市场(依最终用户划分)

  • 电力公司
  • 可再生能源开发商
  • 商业用户
  • 工业用户
  • 住宅消费者
  • 政府/公共部门

9. 全球可再生能源电力电子市场(按地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 其他亚太地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十章:重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十一章 企业概况

  • Infineon Technologies
  • ABB Ltd.
  • Siemens AG
  • Schneider Electric
  • Mitsubishi Electric
  • Delta Electronics
  • Fuji Electric
  • Toshiba Corporation
  • Hitachi Energy
  • ON Semiconductor
  • STMicroelectronics
  • Texas Instruments
  • Semikron Danfoss
  • Power Integrations
  • Vishay Intertechnology
Product Code: SMRC32850

According to Stratistics MRC, the Global Power Electronics for Renewables Market is accounted for $15.2 billion in 2025 and is expected to reach $21.7 billion by 2032 growing at a CAGR of 5.2% during the forecast period. Power Electronics for Renewables refers to advanced electronic systems that convert, control, and optimize electrical power generated from renewable energy sources such as solar, wind, and energy storage systems. These solutions include inverters, converters, and controllers that manage voltage, current, and frequency to ensure grid compatibility and efficient energy transfer. Widely deployed across utility-scale, commercial, and residential installations, power electronics enable grid stability, maximize energy yield, support smart grids, and facilitate reliable integration of intermittent renewable resources.

Market Dynamics:

Driver:

Accelerating global renewable energy deployment

Accelerating global renewable energy deployment is a key driver for the power electronics for renewables market. Governments worldwide are promoting solar, wind, and hybrid energy projects to reduce carbon emissions and achieve energy transition targets. Fueled by favorable policies, declining renewable installation costs, and rising electricity demand, the need for efficient inverters, converters, and power management systems is increasing. These components ensure grid compatibility, energy optimization, and stable power flow, directly supporting large-scale renewable capacity expansion.

Restraint:

High component and system costs

High component and system costs act as a significant restraint for the power electronics for renewables market. Advanced power semiconductors, wide band gap materials, and sophisticated control systems increase upfront investment requirements. Spurred by cost sensitivity in emerging economies, project developers often face budget constraints that delay adoption of advanced power electronics. Additionally, installation complexity and maintenance expenses further elevate total ownership costs, limiting penetration among small-scale renewable projects and distributed energy systems despite long-term efficiency benefits.

Opportunity:

Grid-scale energy storage integration

Grid-scale energy storage integration presents a major growth opportunity for the power electronics for renewables market. As renewable energy generation is inherently intermittent, efficient power electronics are essential for managing bidirectional energy flow between storage systems and the grid. Motivated by the need for grid stability and peak load management, utilities are investing in battery energy storage systems supported by advanced converters and inverters. This trend significantly expands demand for high-performance power electronics solutions across utility-scale renewable installations.

Threat:

Supply chain and raw material volatility

Supply chain disruptions and raw material price volatility pose a notable threat to the power electronics for renewables market. Key materials such as silicon carbide, gallium nitride, copper, and rare earth elements are subject to fluctuating prices and geopolitical risks. These uncertainties increase manufacturing costs and impact production timelines. Additionally, dependence on limited suppliers for critical components can constrain scalability. Such volatility pressures profit margins and creates uncertainty for renewable project developers, potentially slowing market growth.

Covid-19 Impact:

The COVID-19 pandemic had a short-term disruptive impact on the power electronics for renewables market. Manufacturing shutdowns, logistics delays, and labor shortages temporarily slowed renewable project deployment. However, post-pandemic recovery accelerated investments in clean energy as governments introduced green stimulus packages. The renewed focus on energy security and sustainability boosted demand for renewable installations and supporting power electronics. As a result, the market rebounded strongly, supported by long-term decarbonization commitments and infrastructure investments.

The power modules segment is expected to be the largest during the forecast period

The power modules segment is expected to account for the largest market share during the forecast period, resulting from its critical role in efficient power conversion and thermal management. Power modules integrate multiple power semiconductor devices into compact units, enhancing performance and reliability. Widely used in inverters and converters for solar and wind applications, these modules support high voltage and current requirements. Their scalability, efficiency, and reduced system complexity make power modules the preferred choice across renewable energy installations.

The solar power segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the solar power segment is predicted to witness the highest growth rate, propelled by rapid expansion of utility-scale and rooftop solar installations. Declining photovoltaic costs, supportive government incentives, and corporate renewable procurement are accelerating solar adoption globally. Power electronics play a crucial role in maximizing energy yield, ensuring grid compliance, and managing power variability in solar systems. Rising investments in solar farms and distributed generation strongly drive demand for advanced power electronic solutions.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to massive renewable energy capacity additions in China, India, Japan, and Southeast Asia. Strong government policies, expanding manufacturing bases, and increasing electricity demand support widespread deployment of solar and wind projects. The region's cost-competitive manufacturing ecosystem and growing focus on energy transition further stimulate adoption of power electronics for renewables across large-scale and distributed energy systems.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR, associated with aggressive renewable energy targets and grid modernization initiatives. Increasing investments in solar, wind, and energy storage projects drive demand for advanced power electronics. Supportive regulatory frameworks, tax incentives, and technological innovation in power semiconductors further accelerate market growth. The rising need for grid flexibility, resilience, and decarbonization positions North America as a high-growth region for power electronics in renewables.

Key players in the market

Some of the key players in Power Electronics for Renewables Market include Infineon Technologies, ABB Ltd., Siemens AG, Schneider Electric, Mitsubishi Electric, Delta Electronics, Fuji Electric, Toshiba Corporation, Hitachi Energy, ON Semiconductor, STMicroelectronics, Texas Instruments, Semikron Danfoss, Power Integrations and Vishay Intertechnology.

Key Developments:

In Sep 2025, Infineon Technologies introduced an enhanced silicon carbide (SiC) power module portfolio tailored for solar inverters and wind converters, enabling higher switching efficiency, reduced thermal losses, and improved power density for utility-scale renewable installations.

In Aug 2025, ABB Ltd. launched a next-generation grid-forming inverter platform designed to support renewable-heavy power systems, providing advanced voltage and frequency control to stabilize grids with high solar and wind penetration.

In Jul 2025, Siemens AG unveiled an upgraded SINAMICS power electronics solution for renewables, integrating digital monitoring and predictive maintenance capabilities to optimize performance across large solar parks and wind farms.

Components Covered:

  • Inverters
  • Converters
  • Rectifiers
  • Power Modules
  • Control Units
  • Switching Devices

Renewable Sources Covered:

  • Solar Power
  • Wind Power
  • Hydropower
  • Energy Storage Systems
  • Hybrid Renewable Systems
  • Marine Energy

Material Types Covered:

  • Silicon-Based Devices
  • Silicon Carbide (SiC) Devices
  • Gallium Nitride (GaN) Devices
  • Hybrid Semiconductor Modules
  • Wide Bandgap Power Devices

End Users Covered:

  • Utilities
  • Renewable Energy Developers
  • Commercial Users
  • Industrial Users
  • Residential Consumers
  • Government & Public Sector

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 End User Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Power Electronics for Renewables Market, By Component

  • 5.1 Introduction
  • 5.2 Inverters
  • 5.3 Converters
  • 5.4 Rectifiers
  • 5.5 Power Modules
  • 5.6 Control Units
  • 5.7 Switching Devices

6 Global Power Electronics for Renewables Market, By Renewable Source

  • 6.1 Introduction
  • 6.2 Solar Power
  • 6.3 Wind Power
  • 6.4 Hydropower
  • 6.5 Energy Storage Systems
  • 6.6 Hybrid Renewable Systems
  • 6.7 Marine Energy

7 Global Power Electronics for Renewables Market, By Material Type

  • 7.1 Introduction
  • 7.2 Silicon-Based Devices
  • 7.3 Silicon Carbide (SiC) Devices
  • 7.4 Gallium Nitride (GaN) Devices
  • 7.5 Hybrid Semiconductor Modules
  • 7.6 Wide Bandgap Power Devices

8 Global Power Electronics for Renewables Market, By End User

  • 8.1 Introduction
  • 8.2 Utilities
  • 8.3 Renewable Energy Developers
  • 8.4 Commercial Users
  • 8.5 Industrial Users
  • 8.6 Residential Consumers
  • 8.7 Government & Public Sector

9 Global Power Electronics for Renewables Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Infineon Technologies
  • 11.2 ABB Ltd.
  • 11.3 Siemens AG
  • 11.4 Schneider Electric
  • 11.5 Mitsubishi Electric
  • 11.6 Delta Electronics
  • 11.7 Fuji Electric
  • 11.8 Toshiba Corporation
  • 11.9 Hitachi Energy
  • 11.10 ON Semiconductor
  • 11.11 STMicroelectronics
  • 11.12 Texas Instruments
  • 11.13 Semikron Danfoss
  • 11.14 Power Integrations
  • 11.15 Vishay Intertechnology

List of Tables

  • Table 1 Global Power Electronics for Renewables Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Power Electronics for Renewables Market Outlook, By Component (2024-2032) ($MN)
  • Table 3 Global Power Electronics for Renewables Market Outlook, By Inverters (2024-2032) ($MN)
  • Table 4 Global Power Electronics for Renewables Market Outlook, By Converters (2024-2032) ($MN)
  • Table 5 Global Power Electronics for Renewables Market Outlook, By Rectifiers (2024-2032) ($MN)
  • Table 6 Global Power Electronics for Renewables Market Outlook, By Power Modules (2024-2032) ($MN)
  • Table 7 Global Power Electronics for Renewables Market Outlook, By Control Units (2024-2032) ($MN)
  • Table 8 Global Power Electronics for Renewables Market Outlook, By Switching Devices (2024-2032) ($MN)
  • Table 9 Global Power Electronics for Renewables Market Outlook, By Renewable Source (2024-2032) ($MN)
  • Table 10 Global Power Electronics for Renewables Market Outlook, By Solar Power (2024-2032) ($MN)
  • Table 11 Global Power Electronics for Renewables Market Outlook, By Wind Power (2024-2032) ($MN)
  • Table 12 Global Power Electronics for Renewables Market Outlook, By Hydropower (2024-2032) ($MN)
  • Table 13 Global Power Electronics for Renewables Market Outlook, By Energy Storage Systems (2024-2032) ($MN)
  • Table 14 Global Power Electronics for Renewables Market Outlook, By Hybrid Renewable Systems (2024-2032) ($MN)
  • Table 15 Global Power Electronics for Renewables Market Outlook, By Marine Energy (2024-2032) ($MN)
  • Table 16 Global Power Electronics for Renewables Market Outlook, By Material Type (2024-2032) ($MN)
  • Table 17 Global Power Electronics for Renewables Market Outlook, By Silicon-Based Devices (2024-2032) ($MN)
  • Table 18 Global Power Electronics for Renewables Market Outlook, By Silicon Carbide (SiC) Devices (2024-2032) ($MN)
  • Table 19 Global Power Electronics for Renewables Market Outlook, By Gallium Nitride (GaN) Devices (2024-2032) ($MN)
  • Table 20 Global Power Electronics for Renewables Market Outlook, By Hybrid Semiconductor Modules (2024-2032) ($MN)
  • Table 21 Global Power Electronics for Renewables Market Outlook, By Wide Bandgap Power Devices (2024-2032) ($MN)
  • Table 22 Global Power Electronics for Renewables Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global Power Electronics for Renewables Market Outlook, By Utilities (2024-2032) ($MN)
  • Table 24 Global Power Electronics for Renewables Market Outlook, By Renewable Energy Developers (2024-2032) ($MN)
  • Table 25 Global Power Electronics for Renewables Market Outlook, By Commercial Users (2024-2032) ($MN)
  • Table 26 Global Power Electronics for Renewables Market Outlook, By Industrial Users (2024-2032) ($MN)
  • Table 27 Global Power Electronics for Renewables Market Outlook, By Residential Consumers (2024-2032) ($MN)
  • Table 28 Global Power Electronics for Renewables Market Outlook, By Government & Public Sector (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.