脉衝与快速充放电应用储能技术(聚变能源、雷射武器、资料中心、电动车超快充电器等):技术趋势与市场展望(2026-2046)
市场调查报告书
商品编码
1896277

脉衝与快速充放电应用储能技术(聚变能源、雷射武器、资料中心、电动车超快充电器等):技术趋势与市场展望(2026-2046)

Energy Storage for Pulse & Fastest Charge/ Discharge Applications (Fusion Power, Laser Gun, Data Center, EV Fastest Chargers, etc.): Technology, Markets 2026-2046

出版日期: | 出版商: Zhar Research | 英文 230 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

摘要

人工智慧资料中心、聚变能源、先进电磁武器、战斗机以及陆地、海洋和空中最快的电动车充电都需要超越电池本身能力的储能技术。这些应用需要具备脉衝功率、快速充放电和其他独特特性的储能技术,以实现极高的利润率。由于应用普及带来的乘数效应,预计未来20年储能系统的年出货量将成长六倍,达到每年200亿美元以上。

本报告详细分析了脉衝和快速充放电应用储能技术的巨大机会。 本报告介绍了一系列技术方案,包括新型锂离子电容器和电容器/超级电容器混合元件,展示了它们在紧凑型结构中提供强大浪涌和再生能力的卓越性能。这些技术为雷射炮、重型土木工程设备和新型军用飞机中的紧凑型脉衝雷达讯号装置等应用提供了令人印象深刻的浪涌和再生能力。

最佳备用电源、最快电网管理和新一代再生能源

关键设施需要能够几乎瞬间充电的不间断电源,以应对频繁发生的停电。汽车充电也将在几分钟内完成,超越传统电池的性能。这推动了新型脉衝电容器、石墨烯和金属有机框架(MOF)超级电容器(包括用作结构电子装置的超级电容器)以及用于最快电网管理的飞轮发电机的出现。 其他新兴应用包括用于应对下一代高空风能、波浪能和潮汐能发电的小规模间歇性和电力浪涌的不可燃、无毒、免维护设备。

标题:需要脉衝和最快充放电储能技术的关键市场领域和技术候选者(2026-2046 年)来源:Zhar Research 报告 "用于脉衝和最快充放电应用的储能(聚变发电、雷射枪、资料中心、电动汽车最快充电器等):技术、市场 2026-2046 年"

目录

第一章 摘要整理与结论

  • 目标和范围
  • 研究方法
  • 主要结论
  • 需要脉衝应用和最快充放电储能技术的主要市场领域和技术候选者储能
  • 超级电容器及其衍生技术的效能提升策略
  • 基于能量密度谱的锂离子电容器 (LIC) 市场定位
  • 八项 SWOT 分析
    • 超级电容器及其衍生技术
    • 石墨烯超级电容器
    • 电容器-超级电容器混合元件 (CSH)
    • 电池-超级电容器混合元件 (BSH) 的 LIC 形式
    • 锂离子电容器形式的 BSH
    • 石墨烯 LIC
    • 飞轮储能系统 (FESS)
    • 超导磁储能 (SMES)
  • 路线图
  • 市场预测
    • 储能设备市场:电池与非电池
    • 脉衝与快速反应非电池储能市场: 7 个技术类别
    • 脉衝与快速反应非电池储能市场:6 个应用类别
    • 脉衝与快速反应储能市场占有率(按地区划分):4 个地区

第二章:引言:飞轮储能系统 (FESS) 与超导磁储能 (SMES)

  • 概述
  • 常用储能方案
  • 储能工具包:依工作原理分类
  • 电池的局限性
  • 电容器及其衍生技术与电池的比较(包括线圈炮范例)
  • BSH 和 EDLC 研究活动:按国家和技术分类
  • FESS 和 SMES
  • Zhar 研究配套报告

第三章:静电储能电容器与电容器-超级电容器混合型

  • 概述
  • 超级电容器的关键效能参数与销售驱动因素
  • 材料和外形尺寸选择
  • 超级电容器效能改进策略
    • 一般性讨论
    • 活性电极-电解质配对的优先排序
    • 石墨烯的重要性(包括SWOT分析)
    • 11家石墨烯超级电容器材料/装置开发人员和製造商的比较(5列)
  • 研究计画:纯超级电容器(2025年)
  • 电容器-超级电容器混合(CSH)的设计与应用

第四章 静电电容与法拉第功能的混合:赝电容

  • 理解赝电容
  • 促使赝电容的三种机制赝电容与本征/外在现象
  • 亚铁磁性赝电容的研究趋势
  • 赝电容优化路径的出现
  • 赝电容研究进展

第五章 具有法拉第功能的静电混合元件:包括锂离子电容器在内的电池-超级电容器混合元件 (BSH)

  • 电池-超级电容器混合元件基础
  • BSH,尤其是锂离子电容器 (LIC),创造了几个重要的转折点
  • 锂离子电容器 (LIC) 的诸多优势与能量密度选择
  • 以能量密度谱定位锂离子电容器 (LIC) 市场
  • 超级电容器改良策略如何使 BSH 受益包括锂离子电容器 (LIC)
  • 活性电极-电解质对的优先排序
  • 13 个关键结论:BSH 市场,包括锂离子电容器 (LIC)
  • EDLC 和 BSH 的技术应用案例(按应用领域划分)
  • 18 个关键结论:技术与製造商
  • 研究方向调整的必要性
  • SWOT 分析与路线图
  • 超越锂离子电容器 (LIC) 的 BSH 研究:钠离子 BSH、锌离子 BSH 等

第六章 无电池脉衝、最快反应与类似储能应用

  • 电动车:AGV、物料搬运、汽车、卡车、巴士、电车、火车
  • 超级电容器取代燃料电池系统中的电池
  • 电网、微电网、削峰、再生能源以及不间断电源、医疗
  • 军事:雷射炮、电磁轨道炮、脉衝线性加速武器、雷达、卡车等
  • 电力与讯号电子、资料中心、卡车
  • 焊接、脉衝金属成形、脉衝加工
  • 迴旋管钻探深层地热发电

第七章:製造商活动概况

  • 基于10项标准评估103家超级电容器及相关公司:指标与研究方法
  • 总结分析
  • 列表
简介目录

Summary

AI datacenters, nuclear fusion power, new electromagnetic weapons, jet fighters and fastest electric vehicle charging by land, sea and air all need energy storage beyond the capability of batteries alone. Such storage, capable of pulses, fastest charge/ discharge and other uniques has exceptional profit margins. Deliveries will increase sixfold in the next 20 years to over $20 billion yearly because these are all growth markets with the multiplier of increased adoption.

New analysis of rapidly increasing demand

The new Zhar Research report "Energy storage for pulse and fastest charge/ discharge applications (fusion power, laser gun, data center, EV fastest chargers etc.): technology, markets 2026-2046" details this excellent opportunity. It gives the spectrum of choice, including new lithium-ion capacitors and capacitor-supercapacitor hybrids compactly providing formidable power surges and regeneration to earthmoving, and laser guns and compact pulse radar signalling in new military aircraft.

Best backup, fastest grid management, next renewable energy

Critical facilities demand uninterrupted power supplies with near instant recharge to cover repeated outages, and we shall charge our cars in minutes - both better than batteries can provide. Expect new pulse capacitors, graphene and metal oxide framework MOF supercapacitors - some as structural electronics - and flywheel generators for fastest grid management. Other emerging applications include covering the modest intermittency and surges of next generation high altitude wind, wave and tidal stream power demanding non-flammable, non-toxic, fit-and-forget equipment.

Comprehensive report

The 230-page report has 7 chapters, 8 SWOT appraisals, 20 forecast lines, 53 infograms and tables and covers 116 companies. Latest 2025-6 research advances are covered. The 25-page Executive Summary and Conclusions (25 pages) is sufficient for those in a hurry. See key conclusions, the SWOT appraisals and the forecasts as tables, graphs and explanation 2026-2046 aided by roadmaps 2026-2046 for markets, technology and industry. The Introduction then puts energy storage in context, explains ongoing battery limitations and the alternatives.

Chapter 3. Electrostatic storage : Capacitors and capacitor-supercapacitor hybrids gives the basics, materials and format choices, strategies for improvement and latest research advances 2025-6. Chapter 4. Electrostatic hybridised with faradaic functionality: pseudocapacitors explains how this phenomenon occurs in all supercapacitors and it is usually minimised to achieve more ideal performance. However, there is much ongoing research on optimising it to improve energy density at a cost in other performance. What is it? Why? How?

Chapter 5. Electrostatic hybridised with faradaic functionality: battery-supercapacitor BSH hybrids including lithium-ion capacitors takes 105 pages because this is a larger and more-immediate opportunity. Why are they succeeding from fusion power to earthmoving vehicles. See 18 conclusions. Who wants their spectrum of choice from almost-a-supercapacitor to almost-a-battery? What manufacturers and successes along that spectrum and what are the latest research results 2025-6? Why progressing from lithium-ion capacitors to others that are sodium or zin BSH? Results so far?

Batteryless pulse and fastest response in action

Chapter 6. is on batteryless pulse, fastest response and similar storage in action (38 pages). This brings the subject alive with use in electric vehicles: AGV, material handling, car, truck, bus, tram, train. See supercapacitors replacing batteries on a fuel cell system and grid, microgrid, peak shaving, renewable energy and uninterrupted power supplies and medical applications of the various options. Military is well covered with its high profit margins and exacting demands: laser gun, railgun, pulsed linear accelerator weapon, radar, trucks, other. Power and signal electronics, data centers, trucks, welding, pulse metal forming and pulse machining and also powering gyrotron-drilled deep geothermal power - no drill bit just microwave melting of rock.

132 manufacturers analysed

The report then closes with Chapter 7 presenting 132 manufacturer activity profiles in 50 pages mainly of tables using colours and ten columns for analysis but starting with overall analysis pie chart. This new Zhar Research report "Energy storage for pulse and fastest charge/ discharge applications (fusion power, laser gun, data center, EV fastest chargers etc.): technology, markets 2026-2046" is your essential reading for a sober, PhD level analysis of your opportunities in this fast-growing sector.

CAPTION: Primary market sectors requiring pulse and fastest charge/ discharge storage and the technology candidates 2026-2046. Source Zhar Research report "Energy storage for pulse and fastest charge/ discharge applications (fusion power, laser gun, data center, EV fastest chargers etc.): technology, markets 2026-2046".

Table of Contents

1. Executive summary and conclusions

  • 1.1 Purpose and scope of this report
  • 1.2 Methodology of this analysis
  • 1.3 Primary conclusions
  • 1.4 Primary market sectors requiring pulse and fastest charge/ discharge storage and technology candidates 2026-2046
  • 1.5 Strategies for improving supercapacitors and variants
  • 1.6 Lithium-ion capacitor LIC market positioning by energy density spectrum
  • 1.7 Eight SWOT appraisals
    • 1.7.1 SWOT appraisal of supercapacitors and their variants
    • 1.7.2 Graphene supercapacitor SWOT appraisal
    • 1.7.3 SWOT appraisal of capacitor-supercapacitor hybrids CSH
    • 1.7.4 SWOT appraisal of LIC form of BSH
    • 1.7.5 SWOT appraisal of Lithium-Ion Capacitor LIC form of BSH
    • 1.7.6 Graphene LIC SWOT appraisal
    • 1.7.7 Flywheel Energy Storage System FESS SWOT appraisal
    • 1.7.8 SWOT appraisal of Superconducting Magnet Energy Storage SMES
  • 1.8 Roadmap 2026-2046
  • 1.9 Market forecasts 2026-2046 in 20 lines
    • 1.9.1 Energy storage device market battery vs batteryless $ billion 2025-2046
    • 1.9.2 Batteryless storage for pulse and fastest response $ billion 2025-2046 in 7 technology lines
    • 1.9.3 Batteryless storage for pulse and fastest response $ billion 2025-2046 in 6 application lines
    • 1.9.4 Regional share of pulse and fast response storage value market % in four regions 2026-2046

2. Introduction including flywheel FESS and superconducting magnet SMES storage

  • 2.1 Overview
  • 2.2 Energy storage options in general
  • 2.3 Energy storage toolkit by operating principle
  • 2.4 Battery limitations
    • 2.4.1 General
    • 2.4.2 Lithium-ion battery fires are ongoing emitting toxic gas
  • 2.5 Capacitors and their variants compared to batteries including coil gun example
  • 2.6 BSH and EDLC research activity by country and technology
  • 2.7 Flywheel energy storage systems FESS and superconducting magnet energy storage systems SMES
    • 2.7.1 Background, basics, progress
    • 2.7.2 Flywheel motor-generator SWOT appraisal
    • 2.7.3 SMES
  • 2.8 Sister reports from Zhar Research

3. Electrostatic storage : Capacitors and capacitor-supercapacitor hybrids

  • 3.1 Overview
    • 3.1.1 Capacitors and their variants: basics
    • 3.1.2 Spectrum - capacitor to supercapacitor to battery construction, equivalent circuits
  • 3.2 Factors influencing key supercapacitor parameters driving sales
  • 3.3 Materials and format choices
  • 3.4 Strategies for improving supercapacitors
    • 3.4.1 General
    • 3.4.2 Prioritisation of active electrode-electrolyte pairings
    • 3.4.3 Significance of graphene in supercapacitors and variants with SWOT
    • 3.4.4 Eleven graphene supercapacitor material and device developers and manufacturers compared in five columns
  • 3.5 Research pipeline: pure supercapacitors 2025
  • 3.6 Capacitor-supercapacitor hybrid CSH design and uses

4. Electrostatic hybridised with faradaic functionality: pseudocapacitors

  • 4.1 Understanding pseudocapacitance
  • 4.2 Three mechanisms that give rise to pseudocapacitance and the intrinsic/ extrinsic phenomena
  • 4.3 Ferrimagnetic pseudocapacitors 2025-6 research
  • 4.4 Pseudocapacitor optimisation routes emerging
  • 4.5 Research advances with pseudocapacitors 2025-6

5. Electrostatic hybridised with faradaic functionality: battery-supercapacitor BSH hybrids including lithium-ion capacitors

  • 5.1 Basics of battery-supercapacitor hybrids
  • 5.2 BSH and in particular LIC create some valuable tipping points
  • 5.3 The many advantages of lithium-ion capacitors LIC and the energy density choices
  • 5.4 Lithium-ion capacitor LIC market positioning by energy density spectrum
  • 5.5 How strategies for improving supercapacitors will benefit BSH including LIC
  • 5.6 Prioritisation of active electrode-electrolyte pairings
  • 5.7 13 Primary conclusions: BSH markets including LIC
  • 5.8 Technology uses by applicational sector for EDLC vs BSH - examples
  • 5.9 18 primary conclusions: technologies and manufacturers
  • 5.10 How research needs redirecting: 5 columns, 7 lines
  • 5.11 SWOT appraisals and roadmap
  • 5.12 Research on BSH beyond LIC: sodiumc-ion BSH, zinc-ion BSH, other

6. Batteryless pulse, fastest response and similar storage in action

  • 6.1 Electric vehicles: AGV, material handling, car, truck, bus, tram, train
  • 6.2 Supercapacitor replacing battery on fuel cell system
  • 6.3 Grid, microgrid, peak shaving, renewable energy and uninterrupted power supplies, medical
  • 6.4 Military: Laser gun, railgun, pulsed linear accelerator weapon, radar, trucks, other
  • 6.5 Power and signal electronics, data centers, truck
  • 6.6 Welding, pulse metal forming and pulse machining
  • 6.7 Gyrotron-drilled deep geothermal power

7. Manufacturer activity profiles

  • 7.1 103 supercapacitor and variants companies assessed in 10 columns: index, methodology
  • 7.2 Overview analysis
  • 7.3 Listings