封面
市场调查报告书
商品编码
1904704

FPGA加速市场预测至2032年:全球分析,依架构、结构类型、介面类型、应用、最终用户及地区划分

FPGA Acceleration Market Forecasts to 2032 - Global Analysis By Architecture (Standalone FPGA, Embedded FPGA, Heterogeneous FPGA and FPGA SoC), Fabric Type, Interface Type, Application, End User, and By Geography

出版日期: | 出版商: Stratistics Market Research Consulting | 英文 | 商品交期: 2-3个工作天内

价格

根据 Stratistics MRC 的数据,预计到 2025 年全球 FPGA 加速市场规模将达到 76 亿美元,到 2032 年将达到 143 亿美元,预测期内复合年增长率为 8.1%。

FPGA加速层采用先进的类橡胶聚合物製成,旨在在恶劣环境下保持弹性、耐化学性和机械完整性。与标准弹性体不同,这些材料可在宽广的温度范围(-50 度C至 350 度C)内可靠运行,耐腐蚀性强,且压缩永久变形低。典型的例子包括氟碳弹性体、硅橡胶和乙丙橡胶。这些材料在航太、石油天然气和医疗等对密封性、隔振性和耐久性要求极高的产业中至关重要。其优异的韧性确保了在恶劣环境下的安全性和持续运作。

对高效能运算加速的需求

资料密集型工作负载的指数级成长催生了对高效能运算加速的需求,这也是FPGA加速市场的主要驱动力。人工智慧、机器学习、金融建模和科学研究等领域的公司越来越依赖FPGA来分担CPU的运算密集任务。 FPGA固有的平行处理能力、低延迟和可重构性使其成为加速复杂演算法的理想选择。随着云端运算和边缘运算部署的日益普及,各组织正在寻求能够在各种运算环境中平衡效能效率和功耗优化的灵活加速解决方案。

复杂的程式设计和开发工作

陡峭的学习曲线以及复杂的程式设计和开发要求仍然是FPGA加速技术普及的主要障碍。基于FPGA的系统设计通常需要专门的硬体说明语言和深厚的架构专业知识,这会增加开发时间和成本。与以软体为中心的加速器不同,FPGA的采用涉及复杂的软硬体协同设计过程。这些挑战可能会成为中小企业和以软体为中心的组织的障碍。儘管FPGA具有性能优势,尤其是在对时间要求严格的商业和企业级应用中,但熟练的FPGA工程师短缺减缓了其市场渗透速度。

人工智慧和资料中心加速

随着人工智慧工作负载的扩展和超大规模资料中心的兴起,FPGA加速展现出巨大的潜在机会。云端服务供应商正日益整合FPGA来加速推理、资料分析、加密和网路处理任务。 FPGA的可程式设计使其能够快速适应不断演进的人工智慧模型和演算法。出于对节能加速和特定工作负载最佳化的需求,资料中心正利用FPGA来补充GPU和CPU的效能。这一趋势为云端基础设施、人工智慧服务平台和边缘人工智慧部署创造了强劲的商业前景。

与基于ASIC的加速器的竞争

随着专用积体电路 (ASIC) 的普及,FPGA 加速市场正面临日益激烈的竞争压力。基于 ASIC 的加速器在固定工作负载下具有卓越的效能和能源效率,因此对大规模人工智慧和资料中心部署极具吸引力。大型科技公司对客製化晶片的大量投资可能会限制 FPGA 在某些应用中的使用。此外,规模经济效应也使 ASIC 在成熟的工作负荷方面更具优势。这种竞争格局迫使 FPGA 供应商持续创新、改进开发工具,并强调柔软性优势,以维持市场占有率。

新冠疫情的影响:

新冠疫情对FPGA加速市场产生了复杂的影响。初期,供应链中断和半导体製造延迟减缓了硬体的普及。然而,数位转型加速、云端迁移以及远距办公的增加显着提升了对资料中心加速解决方案的需求。在医疗建模、影片串流媒体和企业IT基础设施等领域工作负载激增的推动下,FPGA的普及率强劲反弹。最终,疫情强化了市场对能够适应动态且不可预测的工作负载模式的灵活、可扩展计算加速器的长期需求。

预计在预测期内,FPGA SoC细分市场将占据最大的市场份额。

由于FPGA SoC架构整合了可程式逻辑和嵌入式处理器,预计在预测期内,FPGA SoC将占据最大的市场份额。这种整合能够高效处理需要控制和加速功能的复杂工作负载。在汽车ADAS、通讯基础设施和边缘AI等领域的需求驱动下,FPGA SoC能够实现低延迟、低功耗和紧凑的系统设计。它们在异质运算环境中的通用性使其成为大规模和嵌入式加速应用的理想选择。

预计在预测期内,基于 SRAM 的 FPGA 细分市场将实现最高的复合年增长率。

在预测期内,基于SRAM的FPGA细分市场预计将保持最高的成长率,这主要得益于其卓越的柔软性、可程式设计和效能可扩展性。这些元件支援频繁的设计更新,使其成为快速发展的AI、网路和资料中心工作负载的理想选择。随着半导体製程的进步和能源效率的提升,基于SRAM的FPGA在云端运算和高效能运算环境中的应用日益广泛。与先进开发生态系统的兼容性也进一步推动了市场成长。

占比最大的地区:

由于亚太地区拥有强大的半导体製造能力和不断扩展的资料中心基础设施,预计该地区将在预测期内占据最大的市场份额。中国、日本、韩国和台湾等国家和地区正大力投资人工智慧、5G和云端运算生态系统。在快速数位化和政府主导的技术倡议的推动下,FPGA加速技术在通讯、工业自动化和家用电子电器等领域的应用日益广泛,进一步巩固了该地区的市场主导地位。

复合年增长率最高的地区:

在预测期内,由于人工智慧、云端运算和超大规模资料中心的积极应用,北美预计将实现最高的复合年增长率。领先的FPGA供应商、云端服务供应商和技术创新者的存在,正在推动对加速解决方案的持续需求。在自主系统、国防运算和进阶分析领域投资的推动下,企业正在扩大FPGA加速器的应用,以实现低延迟、高吞吐量的处理,这使得北美成为成长最快的区域市场。

免费客製化服务:

购买此报告的客户可以选择以下免费自订选项之一:

  • 公司概况
    • 对其他市场公司(最多 3 家公司)进行全面分析
    • 对主要企业进行SWOT分析(最多3家公司)
  • 区域细分
    • 根据客户要求,提供主要国家的市场估算和预测以及复合年增长率(註:可行性需确认)。
  • 竞争标竿分析
    • 根据主要企业的产品系列、地理覆盖范围和策略联盟进行基准分析

目录

第一章执行摘要

第二章 前言

  • 摘要
  • 相关利益者
  • 调查范围
  • 调查方法
  • 研究材料

第三章 市场趋势分析

  • 司机
  • 抑制因素
  • 机会
  • 威胁
  • 应用分析
  • 终端用户分析
  • 新兴市场
  • 新冠疫情的感染疾病

第四章 波特五力分析

  • 供应商的议价能力
  • 买方的议价能力
  • 替代品的威胁
  • 新进入者的威胁
  • 竞争对手之间的竞争

第五章 全球FPGA加速市场(依架构划分)

  • 独立式FPGA
  • 嵌入式FPGA
  • 异构FPGA
  • FPGA SoC

6. 全球FPGA加速市场(依架构类型划分)

  • 基于SRAM的FPGA
  • 基于快闪记忆体的FPGA
  • 基于抗熔丝的FPGA

7. 全球FPGA加速市场依介面类型划分

  • 基于 PCIe 的 FPGA 卡
  • 乙太网路连接的FPGA模组
  • MIPI/CSI介面
  • 客製化互连

第八章:全球FPGA加速市场(按应用划分)

  • 人工智慧和机器学习加速
  • 资料中心加速
  • 网路和边缘处理
  • 高效能运算
  • 影像和影像处理

9. 全球FPGA加速市场(依最终用户划分)

  • 资料中心营运商
  • 云端服务供应商
  • 企业客户

第十章 全球FPGA加速市场(依地区划分)

  • 北美洲
    • 美国
    • 加拿大
    • 墨西哥
  • 欧洲
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙
    • 其他欧洲
  • 亚太地区
    • 日本
    • 中国
    • 印度
    • 澳洲
    • 纽西兰
    • 韩国
    • 亚太其他地区
  • 南美洲
    • 阿根廷
    • 巴西
    • 智利
    • 其他南美国家
  • 中东和非洲
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 卡达
    • 南非
    • 其他中东和非洲地区

第十一章 重大进展

  • 协议、伙伴关係、合作和合资企业
  • 併购
  • 新产品发布
  • 业务拓展
  • 其他关键策略

第十二章 企业概况

  • AMD(Xilinx)
  • Intel Corporation
  • NVIDIA Corporation
  • Lattice Semiconductor Corporation
  • Microchip Technology Inc.
  • Broadcom Inc.
  • Samsung Electronics Co., Ltd.
  • IBM Corporation
  • Amazon Web Services, Inc.
  • Microsoft Corporation
  • Google LLC
  • Huawei Technologies Co., Ltd.
  • Alibaba Group Holding Limited
  • Baidu, Inc.
  • Inspur Group
  • Fujitsu Limited
  • NEC Corporation
Product Code: SMRC33079

According to Stratistics MRC, the Global FPGA Acceleration Market is accounted for $7.6 billion in 2025 and is expected to reach $14.3 billion by 2032 growing at a CAGR of 8.1% during the forecast period. FPGA Acceleration are advanced rubber-like polymers designed to maintain elasticity, chemical resistance, and mechanical integrity under extreme conditions. Unlike standard elastomers, they operate reliably across wide temperature ranges (-50°C to 350°C), resist aggressive chemicals, and exhibit low compression set. Common types include fluorocarbon, silicone, and ethylene-propylene elastomers. These materials are critical in aerospace, oil & gas, and medical applications where sealing, vibration isolation, and durability are essential. Their resilience ensures safety and operational continuity in harsh environments.

Market Dynamics:

Driver:

Demand for high-performance computing acceleration

Exponential growth in data-intensive workloads, the demand for high-performance computing acceleration is a primary driver for the FPGA acceleration market. Enterprises across AI, machine learning, financial modeling, and scientific research increasingly rely on FPGAs to offload compute-heavy tasks from CPUs. Their inherent parallel processing capability, low latency, and reconfigurability make FPGAs highly attractive for accelerating complex algorithms. Spurred by rising cloud adoption and edge computing deployments, organizations seek flexible acceleration solutions that balance performance efficiency with power optimization across diverse compute environments.

Restraint:

Complex programming and development efforts

Steep learning curves, complex programming and development requirements remain a key restraint in FPGA acceleration adoption. Designing FPGA-based systems often demands specialized hardware description languages and deep architectural expertise, increasing development time and costs. Unlike software-centric accelerators, FPGA deployment involves intricate hardware-software co-design processes. These challenges can deter smaller enterprises and software-focused organizations. Influenced by limited availability of skilled FPGA engineers, market penetration is slowed despite performance advantages, particularly in time-sensitive commercial and enterprise-scale implementations.

Opportunity:

AI and data center acceleration

AI workload expansion and hyperscale data center growth, FPGA acceleration presents significant opportunity potential. Cloud service providers increasingly integrate FPGAs to accelerate inference, data analytics, encryption, and network processing tasks. Their reprogrammability allows rapid adaptation to evolving AI models and algorithms. Motivated by the need for energy-efficient acceleration and workload-specific optimization, data centers are leveraging FPGAs to complement GPUs and CPUs. This trend creates strong commercialization prospects across cloud infrastructure, AI-as-a-service platforms, and edge AI deployments.

Threat:

Competition from ASIC-based accelerators

The rising adoption of application-specific integrated circuits, the FPGA acceleration market faces increasing competitive pressure. ASIC-based accelerators offer superior performance and power efficiency for fixed workloads, making them attractive for large-scale AI and data center deployments. Tech giants investing heavily in custom silicon may limit FPGA adoption in certain applications. Additionally, economies of scale favor ASICs in mature workloads. This competitive landscape challenges FPGA vendors to continuously innovate, enhance development tools, and emphasize flexibility advantages to retain market relevance.

Covid-19 Impact:

The COVID-19 pandemic had a mixed impact on the FPGA acceleration market. Initially, supply chain disruptions and delayed semiconductor manufacturing slowed hardware deployments. However, accelerated digital transformation, cloud migration, and remote operations significantly increased demand for data center acceleration solutions. Spurred by surging workloads in healthcare modeling, video streaming, and enterprise IT infrastructure, FPGA adoption rebounded strongly. The pandemic ultimately reinforced long-term demand for flexible, scalable computing accelerators capable of supporting dynamic and unpredictable workload patterns.

The FPGA SoC segment is expected to be the largest during the forecast period

The FPGA SoC segment is expected to account for the largest market share during the forecast period, resulting from its integrated architecture combining programmable logic with embedded processors. This integration enables efficient handling of complex workloads requiring both control and acceleration functions. Fueled by demand in automotive ADAS, telecom infrastructure, and edge AI, FPGA SoCs deliver reduced latency, lower power consumption, and compact system designs. Their versatility across heterogeneous computing environments positions them as the preferred choice for large-scale and embedded acceleration applications.

The SRAM-based FPGAs segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the SRAM-based FPGAs segment is predicted to witness the highest growth rate, propelled by their superior flexibility, reprogrammability, and performance scalability. These devices allow frequent design updates, making them ideal for rapidly evolving AI, networking, and data center workloads. Motivated by advancements in semiconductor nodes and improved power efficiency, SRAM-based FPGAs are increasingly adopted in cloud and high-performance computing environments. Their compatibility with advanced development ecosystems further accelerates market growth.

Region with largest share:

During the forecast period, the Asia Pacific region is expected to hold the largest market share, attributed to strong semiconductor manufacturing capabilities and expanding data center infrastructure. Countries such as China, Japan, South Korea, and Taiwan are investing heavily in AI, 5G, and cloud computing ecosystems. Fueled by rapid digitalization and government-backed technology initiatives, FPGA acceleration adoption is rising across telecom, industrial automation, and consumer electronics sectors, reinforcing the region's dominant market position.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR associated with aggressive adoption of AI, cloud computing, and hyperscale data centers. The presence of leading FPGA vendors, cloud service providers, and technology innovators drives continuous demand for acceleration solutions. Spurred by investments in autonomous systems, defense computing, and advanced analytics, enterprises increasingly deploy FPGA accelerators to achieve low-latency and high-throughput processing, positioning North America as the fastest-growing regional market.

Key players in the market

Some of the key players in FPGA Acceleration Market include AMD (Xilinx), Intel Corporation, NVIDIA Corporation, Lattice Semiconductor Corporation, Microchip Technology Inc., Broadcom Inc., Samsung Electronics Co., Ltd., IBM Corporation, Amazon Web Services, Inc., Microsoft Corporation, Google LLC, Huawei Technologies Co., Ltd., Alibaba Group Holding Limited, Baidu, Inc., Inspur Group, Fujitsu Limited and NEC Corporation

Key Developments:

In October 2025, AMD (Xilinx) launched next-generation Versal FPGA accelerators, optimized for AI inference and data center workloads, delivering higher throughput, lower latency, and improved energy efficiency for cloud and edge computing applications.

In September 2025, Intel introduced Agilex FPGA accelerators with integrated chiplet architecture, enabling scalable performance for networking, AI, and HPC workloads, while reducing power consumption and improving flexibility in heterogeneous computing environments.

In September 2025, IBM introduced FPGA acceleration within its hybrid cloud platforms, leveraging programmable logic for AI model training, financial analytics, and scientific simulations, improving scalability and performance.

Architectures Covered:

  • Standalone FPGA
  • Embedded FPGA
  • Heterogeneous FPGA
  • FPGA SoC

Fabric Types Covered:

  • SRAM-Based FPGAs
  • Flash-Based FPGAs
  • Antifuse-Based FPGAs

Interface Types Covered:

  • PCIe-Based FPGA Cards
  • Ethernet-Connected FPGA Modules
  • MIPI/CSI Interfaces
  • Custom Interconnects

Applications Covered:

  • AI & Machine Learning Acceleration
  • Data Center Acceleration
  • Network & Edge Processing
  • High-Performance Computing
  • Video & Image Processing

End Users Covered:

  • Data Center Operators
  • Cloud Service Providers
  • Enterprise Customers

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global FPGA Acceleration Market, By Architecture

  • 5.1 Introduction
  • 5.2 Standalone FPGA
  • 5.3 Embedded FPGA
  • 5.4 Heterogeneous FPGA
  • 5.5 FPGA SoC

6 Global FPGA Acceleration Market, By Fabric Type

  • 6.1 Introduction
  • 6.2 SRAM-Based FPGAs
  • 6.3 Flash-Based FPGAs
  • 6.4 Antifuse-Based FPGAs

7 Global FPGA Acceleration Market, By Interface Type

  • 7.1 Introduction
  • 7.2 PCIe-Based FPGA Cards
  • 7.3 Ethernet-Connected FPGA Modules
  • 7.4 MIPI/CSI Interfaces
  • 7.5 Custom Interconnects

8 Global FPGA Acceleration Market, By Application

  • 8.1 Introduction
  • 8.2 AI & Machine Learning Acceleration
  • 8.3 Data Center Acceleration
  • 8.4 Network & Edge Processing
  • 8.5 High-Performance Computing
  • 8.6 Video & Image Processing

9 Global FPGA Acceleration Market, By End User

  • 9.1 Introduction
  • 9.2 Data Center Operators
  • 9.3 Cloud Service Providers
  • 9.4 Enterprise Customers

10 Global FPGA Acceleration Market, By Geography

  • 10.1 Introduction
  • 10.2 North America
    • 10.2.1 US
    • 10.2.2 Canada
    • 10.2.3 Mexico
  • 10.3 Europe
    • 10.3.1 Germany
    • 10.3.2 UK
    • 10.3.3 Italy
    • 10.3.4 France
    • 10.3.5 Spain
    • 10.3.6 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 Japan
    • 10.4.2 China
    • 10.4.3 India
    • 10.4.4 Australia
    • 10.4.5 New Zealand
    • 10.4.6 South Korea
    • 10.4.7 Rest of Asia Pacific
  • 10.5 South America
    • 10.5.1 Argentina
    • 10.5.2 Brazil
    • 10.5.3 Chile
    • 10.5.4 Rest of South America
  • 10.6 Middle East & Africa
    • 10.6.1 Saudi Arabia
    • 10.6.2 UAE
    • 10.6.3 Qatar
    • 10.6.4 South Africa
    • 10.6.5 Rest of Middle East & Africa

11 Key Developments

  • 11.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 11.2 Acquisitions & Mergers
  • 11.3 New Product Launch
  • 11.4 Expansions
  • 11.5 Other Key Strategies

12 Company Profiling

  • 12.1 AMD (Xilinx)
  • 12.2 Intel Corporation
  • 12.3 NVIDIA Corporation
  • 12.4 Lattice Semiconductor Corporation
  • 12.5 Microchip Technology Inc.
  • 12.6 Broadcom Inc.
  • 12.7 Samsung Electronics Co., Ltd.
  • 12.8 IBM Corporation
  • 12.9 Amazon Web Services, Inc.
  • 12.10 Microsoft Corporation
  • 12.11 Google LLC
  • 12.12 Huawei Technologies Co., Ltd.
  • 12.13 Alibaba Group Holding Limited
  • 12.14 Baidu, Inc.
  • 12.15 Inspur Group
  • 12.16 Fujitsu Limited
  • 12.17 NEC Corporation

List of Tables

  • Table 1 Global FPGA Acceleration Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global FPGA Acceleration Market Outlook, By Architecture (2024-2032) ($MN)
  • Table 3 Global FPGA Acceleration Market Outlook, By Standalone FPGA (2024-2032) ($MN)
  • Table 4 Global FPGA Acceleration Market Outlook, By Embedded FPGA (2024-2032) ($MN)
  • Table 5 Global FPGA Acceleration Market Outlook, By Heterogeneous FPGA (2024-2032) ($MN)
  • Table 6 Global FPGA Acceleration Market Outlook, By FPGA SoC (2024-2032) ($MN)
  • Table 7 Global FPGA Acceleration Market Outlook, By Fabric Type (2024-2032) ($MN)
  • Table 8 Global FPGA Acceleration Market Outlook, By SRAM-Based FPGAs (2024-2032) ($MN)
  • Table 9 Global FPGA Acceleration Market Outlook, By Flash-Based FPGAs (2024-2032) ($MN)
  • Table 10 Global FPGA Acceleration Market Outlook, By Antifuse-Based FPGAs (2024-2032) ($MN)
  • Table 11 Global FPGA Acceleration Market Outlook, By Interface Type (2024-2032) ($MN)
  • Table 12 Global FPGA Acceleration Market Outlook, By PCIe-Based FPGA Cards (2024-2032) ($MN)
  • Table 13 Global FPGA Acceleration Market Outlook, By Ethernet-Connected FPGA Modules (2024-2032) ($MN)
  • Table 14 Global FPGA Acceleration Market Outlook, By MIPI/CSI Interfaces (2024-2032) ($MN)
  • Table 15 Global FPGA Acceleration Market Outlook, By Custom Interconnects (2024-2032) ($MN)
  • Table 16 Global FPGA Acceleration Market Outlook, By Application (2024-2032) ($MN)
  • Table 17 Global FPGA Acceleration Market Outlook, By AI & Machine Learning Acceleration (2024-2032) ($MN)
  • Table 18 Global FPGA Acceleration Market Outlook, By Data Center Acceleration (2024-2032) ($MN)
  • Table 19 Global FPGA Acceleration Market Outlook, By Network & Edge Processing (2024-2032) ($MN)
  • Table 20 Global FPGA Acceleration Market Outlook, By High-Performance Computing (2024-2032) ($MN)
  • Table 21 Global FPGA Acceleration Market Outlook, By Video & Image Processing (2024-2032) ($MN)
  • Table 22 Global FPGA Acceleration Market Outlook, By End User (2024-2032) ($MN)
  • Table 23 Global FPGA Acceleration Market Outlook, By Data Center Operators (2024-2032) ($MN)
  • Table 24 Global FPGA Acceleration Market Outlook, By Cloud Service Providers (2024-2032) ($MN)
  • Table 25 Global FPGA Acceleration Market Outlook, By Enterprise Customers (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.