全固态电池的技术现状和到2030年(2022年)的市场前景
市场调查报告书
商品编码
1068491

全固态电池的技术现状和到2030年(2022年)的市场前景

<2022> Technology Status and Market Outlook of All-Solid-State Battery (~2030)

出版日期: | 出版商: SNE Research | 英文 222 Pages | 商品交期: 请询问到货日

价格
简介目录

随着与锂电池的稳定性和能量密度相关的问题层出不穷,人们对开发能够解决这些问题的下一代电池越来越感兴趣。其中,全固态电池以其稳定性和发展响应能力最受业内人士关注。

在本报告中,我们调查了固态电池市场,每种类型的优势、劣势和挑战,详细解释了製造过程,每个电池製造商的主要市场发展和成就□□,以及每个市场到 2030 年输入。它提供诸如前景等信息。

内容

第一章介绍

  • 电池发展史
    • 以往的电池开发历史
    • 锰电池(Leclanchet 电池)
    • 碱性电池
    • 铅蓄电池
    • 镍镉电池
    • 镍氢电池
    • 锂离子电池
  • 锂离子电池问题
    • 安全
    • 能量密度

第 2 章固态电池

  • 全固态电池的优势
  • 全固态电池製造工艺
  • 固体电解质
  • 全固态电池对现有 SCM 的影响

第 3 章硫化物电解质

  • 硫化物电解质的种类
  • 硫化物基电解质的合成
  • 核心原料合成

第 4 章氧化物电解质

  • 氧化物电解质的种类
  • 氧化物基电解质的合成方法

第 5 章聚合物基电解质

  • 高分子电解质的种类
  • 高分子电解质的合成

第六章固态电池的研发趋势

  • 全固态电池的问题
  • 全固态电池的研发趋势
    • 提高锂金属的稳定性
    • 提高电极耦合能力
    • 改进的电极板製造工艺
  • 硫化物基电解质的研究与发展趋势
    • 提高了固体电解质和电极的界面稳定性
    • 改进了粒子分离
    • 抑制空洞生成
    • 提高固体电解质的性能
  • 氧化物电解质的研发趋势
    • 改善固体电解质/电极接触
    • 提高固体电解质的性能
  • 高分子电解质研发趋势
    • 提高了电解质层的独立性
    • 抑制锂枝晶的形成

第七章全固态电池专利趋势

  • 全固态电池专利汇总
  • 聚合物类型的主要专利
  • 无机和有机/聚合物杂化物的主要专利
  • 全固态电池专利-原材料
  • 全固态电池专利-电池应用
  • 全固态电池材料核心专利

第 8 章 ASB 开发人员现状

  • 亚洲
    • Samsung Electronics
    • Korea Institute of Industrial Technology
    • LG Chem
    • SK Innovation
    • Hyundai Motors
    • Seven King Energy
    • Toyota
    • Hitachi Zosen
    • TDK
    • Ohara
    • Murata
    • Idemitsu Kosan
    • APB
    • FDK
    • NGK SPARK PLUG
    • Taiyo Yuden
    • CATL
    • Prologium
    • Ganfeng Lithium
    • TDL
    • Coslight
    • Welion New Energy
    • BYD
    • Daejoo Electronic Materials
    • ISU Chemical
    • CIS
    • Hannong Hawseong
  • 欧洲
    • Ilika
    • Blue Solutions
    • IMEC
    • Embatt
    • Innolith
    • Saft
  • 北美
    • Solid Power
    • Solid Energy Systems
    • 24M
    • Hydro Québec
    • Sakti3
    • SEEO
    • Brightvolt
    • Ionic Materials
    • TeraWatt
    • QuantumScape
    • Infinite Power Solution
    • Prieto
    • Factorial
    • Amprius
    • EoCell
    • Cymbet
    • Johnson energy storage
  • 固态电池开发联合伙伴关係的现状
  • 各地区支持组织的状况
    • 国际政府资助的国际合作
    • 亚洲主要经销商
    • 欧洲主要经销商
    • 北美主要经销商
  • 区域支持系统
    • 日本
    • 欧洲

第 9 章 SNE 见解

  • 按电解液类型划分的缺点(大面积电池)
  • 不同电解质的挑战及发展方向
  • 电池(混合/半固态)
  • 企业全固态电池量产时代
  • 全固态电池正负极的现状和未来
  • 全固态电池类型(氧化物/硫化物/聚合物)之间的竞争
  • 全固态电池的各种用途
  • 全固态电池生产设施图片

第十章固态电池市场前景

  • 概览
  • 市场展望
简介目录
Product Code: 180

With the issues related to the stability and energy density of LiB continuously emerging in the industry, there are growing interests in developing next-generation batteries to address those issues. Among them, the all-solid-state battery has been attracting the biggest attention from the industry players in terms of stability and development readiness.

The all-solid-state battery can be categorized into three types: sulfide-based, oxide-based, and polymer-based. Each type has different advantages/disadvantages and pending issues. This report describes the advantages/disadvantages and issues related to each type as well as the details of their manufacturing processes. Furthermore, this report explores the major developments and achievements made by each battery maker and offers a market outlook for each type till 2030.

This report draws market estimates from comprehensive research on the level of technology development, requirements by OEMs and mass production targets of all-solid-state battery makers. The market analysis provided in this report is categorized into battery maker types, companies, and applications.

All of the above are provided in 10 chapters of which brief indexes are as stated in the following table of contents.

To provide a deeper insight, the 2022 report adds the SNE Insight chapter which deals with the challenges facing different electrolytes and tries to guide directions for their improvement. The chapter also investigates Semi Solid/Hybrid batteries and the mass production time and targets of different battery makers. The report is all the more meaningful as it offers a more detailed market outlook than the 2021 edition, based on the current status and future plans of all-solid-state battery developers.

Table of Contents

1. Introduction

  • 1.1. History of Battery Development
    • 1.1.1. History of Ancient Battery Development
    • 1.1.2. Manganese Battery (Leclanché cell)
    • 1.1.3. Alkaline cell
    • 1.1.4. Lead-acid battery
    • 1.1.5. Ni-Cd battery
    • 1.1.6. Ni-MH battery
    • 1.1.7. Lithium-ion battery
  • 1.2. Challenges with Lithium-Ion Battery
    • 1.2.1. Safety
    • 1.2.2. Energy Density

2. All-Solid-State Battery

  • 2.1. Advantages of All-Solid-State Battery
    • 2.1.1. Increase of Energy Density
    • 2.1.2. Availability in Application of New Active Materials
    • 2.1.3. Low Activation Energy
  • 2.2. Manufacturing Process of All-Solid-State Battery
    • 2.2.1. Manufacturing of Electrolyte Layers
    • 2.2.2. Production of Anode and Cathode Composite Layers
    • 2.2.3. Cell Assembly
  • 2.3. Solid Electrolyte
    • 2.3.1. History of Solid Electrolyte Development
    • 2.3.2. Operation Mechanism of Solid Electrolyte
    • 2.3.3. Classification of Solid Electrolyte
  • 2.4. Influences of All-Solid-State Battery on Existing SCMs

3. Sulfide-Based Electrolyte

  • 3.1. Types of Sulfide-Based Electrolyte
    • 3.1.1. Thio-LISICON-based
    • 3.1.2. Binary sulfide-based
    • 3.1.3. Argyrodite-based
    • 3.1.4. Others: Li7P2S8I
  • 3.2. Synthesizing Methods for Sulfide-Based Electrolyte
    • 3.2.1. Solid-phase Synthesis
    • 3.2.2. Liquid-phase Synthesis
    • 3.2.3. Wet-chemical Synthesis
  • 3.3. Synthesizing Methods for Core Raw Materials
    • 3.3.1. Core Raw Materials: Li2S
    • 3.3.2. Synthesis of Starting Materials
    • 3.3.3. Starting Material: Li metal
    • 3.3.4. Starting Material: Li2SO4
    • 3.3.5. Starting Material: Li2CO3
    • 3.3.6. Starting Material: LiOH
    • 3.3.7. Starting Material: Li-R

4. Oxide-Based Electrolyte

  • 4.1. Types of Oxide-Based Electrolyte
    • 4.1.1. Perovskite-based
    • 4.1.2. Garnet-based
    • 4.1.3. NASICON-based
    • 4.1.4. Li1+xAlxGe2-x(PO4)3 (LAGP)
    • 4.1.5. Others: Li2.9PO3.3N0.46 (LiPON)
  • 4.2. Synthesizing Methods for Oxide-Based Electrolyte
    • 4.2.1. Solid-phase Synthesis
    • 4.2.2. Solid-phase Synthesis

5. Polymer-Based Electrolyte

  • 5.1. Types of Polymer-Based Electrolyte
    • 5.1.1. PEO-based Electrolyte
    • 5.1.2. Polymer/Ceramic Composite
  • 5.2. Synthesizing Methods for Polymer-Based Electrolyte
    • 5.2.1. Blending method - PEO-based Electrolyte
    • 5.2.2. Blending method - Polymer/Ceramic Composite

6. All-Solid-State Battery R&D Trend

  • 6.1. Problems of All-Solid-State Battery
  • 6.2. All-Solid-State Battery R&D Trend
    • 6.2.1. Enhancement of Li metal stability
    • 6.2.2. Improvement of Electrode Binding Capacity
    • 6.2.3. Improvement of Pole Plate Manufacturing Process
  • 6.3. Sulfide-Based Electrolyte R&D Trend
    • 6.3.1. Improvement of Interfacial Stability of Solid Electrolyte/Electrode
    • 6.3.2. Improvement of Particle Segregation
    • 6.3.3. Suppression of Void Generation
    • 6.3.4. Improvement of Solid Electrolyte Performance
  • 6.4. Oxide-Based Electrolyte R&D Trend
    • 6.4.1. Improvement of Solid Electrolyte/Electrode Contact
    • 6.4.2. Improvement of Solid Electrolyte Performance
  • 6.5. Polymer-Based Electrolyte R&D Trend
    • 6.5.1. Enhancement of Self-standing Characteristics of Electrolyte Layers
    • 6.5.2. Suppression of Li Dendrite Formation

7. Trend of All-Solid-State Battery Patents

  • 7.1. Outline of All-Solid-State Battery Patents
  • 7.2. Polymer-type Major Patents
  • 7.3. Inorganic, Organic/Polymer Hybrid Major Patens
  • 7.4. All-Solid-State Battery Patents - Raw Materials
  • 7.5. All-Solid-State Battery Patents - Battery Application
  • 7.6. Core Patents by All-Solid-State Battery Material

8. Current Status of ASB Developers

  • 8.1. In Asia
    • 8.1.1. Samsung Electronics
    • 8.1.2. Korea Institute of Industrial Technology
    • 8.1.3. LG Chem
    • 8.1.4. SK Innovation
    • 8.1.5. Hyundai Motors
    • 8.1.6. Seven King Energy
    • 8.1.7. Toyota
    • 8.1.8. Hitachi Zosen
    • 8.1.9. TDK
    • 8.1.10. Ohara
    • 8.1.11. Murata
    • 8.1.12. Idemitsu Kosan
    • 8.1.13. APB
    • 8.1.14. FDK
    • 8.1.15. NGK SPARK PLUG
    • 8.1.16. Taiyo Yuden
    • 8.1.17. CATL
    • 8.1.18. Prologium
    • 8.1.19. Ganfeng Lithium
    • 8.1.20. TDL
    • 8.1.21. Coslight
    • 8.1.22. Welion New Energy
    • 8.1.23. BYD
    • 8.1.24. Daejoo Electronic Materials
    • 8.1.25. ISU Chemical
    • 8.1.26. CIS
    • 8.1.27. Hannong Hawseong
  • 8.2. In Europe
    • 8.2.1. Ilika
    • 8.2.2. Blue Solutions
    • 8.2.3. IMEC
    • 8.2.4. Embatt
    • 8.2.5. Innolith
    • 8.2.6. Saft
  • 8.3. In North America
    • 8.3.1. Solid Power
    • 8.3.2. Solid Energy Systems
    • 8.3.3. 24M
    • 8.3.4. Hydro Québec
    • 8.3.5. Sakti3
    • 8.3.6. SEEO
    • 8.3.7. Brightvolt
    • 8.3.8. Ionic Materials
    • 8.3.9. TeraWatt
    • 8.3.10. QuantumScape
    • 8.3.11. Infinite Power Solution
    • 8.3.12. Prieto
    • 8.3.13. Factorial
    • 8.3.14. Amprius
    • 8.3.15. EoCell
    • 8.3.16. Cymbet
    • 8.3.17. Johnson energy storage
  • 8.4. Current Status of Joint Partnership for All-Solid-State Battery Development
  • 8.5. Status of Supporting Agencies by Region
    • 8.5.1. Global Cooperation Through Inter-national Government Funding
    • 8.5.1. Major Agencies in Asia
    • 8.5.2. Major Agencies in Europe
    • 8.5.3. Major Agencies in North America
  • 8.6. Support Programs by Region
    • 8.6.1. Japan
    • 8.6.2. Europe

9. SNE Insight

  • 9.1. Drawbacks of Electrolyte by Type (Large-area Battery)
  • 9.2. Challenges and Development Direction for Different Electrolytes
  • 9.3. Various Types of Batteries (Hybrid/Semi Solid)
  • 9.4. Time of All-Solid-State Battery Mass Production by Companies
  • 9.5. Current Status and Future Direction of All-solid-state Battery Anode/Cathode
  • 9.6. Competition Amongst All-Solid-State Battery Types (Oxide/Sulfide/Polymer)
  • 9.7. Various Applications of All-Solid-State Battery
  • 9.8. Images of All-Solid-State Battery Production Facilities

10. All-Solid-State Battery Market Outlook

  • 10.1. Overview
  • 10.2. Market Outlook