当前和未来的全固态电池製造技术:2023
市场调查报告书
商品编码
1212745

当前和未来的全固态电池製造技术:2023

<2023> The Present and Future of All Solid-State Battery Manufacturing Technology

出版日期: | 出版商: SNE Research | 英文 232 Pages | 商品交期: 请询问到货日

价格
简介目录

锂离子电池是当今最常用的电池,在对新型电子设备和电动汽车的爆炸性需求的推动下,通过不断的技术发展提高了性能。 然而,由于其高能量密度,锂离子电池存在着火和爆炸的风险。 为了避免这些风险,应用固态电解质的全固态电池作为下一代电池技术备受关注。

全球全固态电池市场已录得180%的高增长,预计将从2022年的约2750万美元增长至2030年的约400亿美元。

本报告探讨了全固态电池製造技术,概述了全固态电池、不同类型的关键部件、特性、製造工艺、挑战和解决方案以及领先公司的製造技术。

内容

第一章全固态电池概述

  • 全固态电池 (ASB)
  • 全固态电池固体电解质
  • 全固态技术的趋势
  • 全固态电池市场展望

第2章固体电解质

  • 氧化物固体电解质
    • 氧化物电解质的性质
    • 氧化物电解质的相关特性
    • 氧化物固体电解质的离子电导率及应用
    • NASION系统
    • 石榴石系列
    • 钙钛矿系统
    • 氧化物电解质的主要问题
    • 氧化物电解质的具体问题和解决方案
  • 硫化物固体电解质
    • 硫化物基电解质的特性:优点
    • 硫化物基电解质的特性:缺点
    • 硫化物电解液的特性
    • 硫化物基固体电解质的离子电导率及其应用
    • LPS 系列
    • LPS 系统:晶体结构
    • Thio-LISICON 系列
    • LGPS 系列
    • LGPS 系统:结构和离子电导率
    • 安捷洛特
    • 基于硫化物的电解质的具体问题和解决方案
  • 聚合物固体电解质
    • 聚合物基体类型和特性
    • 聚合物电解质类型和优点/缺点
    • 聚合物电解质的特点
    • 聚合物电解质问题及解决方案
  • 固体电解质相容性

第 3 章:全固态电池中的电极

  • 阴极
    • 应用于全固态电池的正极活性材料
    • 正极活性材料的发展趋势
    • 阴极和復合阴极处理
  • 阳极
    • 硅阳极
    • 硅/石墨阳极
    • 锂负极
    • 锂金属阳极处理
    • 无阳极
    • 没有薄膜或阳极的应用
    • 锂金属和硅阳极氧化
    • 无阳极与其他阳极的比较
    • 锂金属负极和硅负极製造方法的比较

第 4 章固态电池

  • 全固态电池製造
    • 固体电解质处理
    • 细胞组装
    • 电池完成
    • 全固态电池与锂离子电池製造工艺对比
    • 全固态电池的材料成本
    • 全固态电池的製造成本
    • 全固态电池固体电解质的成本比较
    • 全固态电池的一个有前途的概念
    • 製造全固态电池
  • 氧化物全固态电池
  • 硫化物基全固态电池
  • 聚合物全固态电池
  • 电池能量密度

第5章全固态电池製造技术

  • 实验室细胞製造
    • 实验室级电池製造
    • 压粉电池製造
    • 压粉三极管製造工艺
    • 钮扣电池製造工艺
    • 日本的 NEDO:全固态电池路线图
    • 软包电池製造工艺:NEDO标准电池
    • 软包电池製造工艺:NEDO 演示电池
    • NEDO 大面积层压示范电池的製造
    • 第一代固态演示电池 LIB
    • NEDO Japan:下一代固态示范电池 LIB
  • 电池製造技术
    • 全固态电池类型的优缺点
    • 根据固体电解质的类型适当的製造方法
    • CIP、WIP 和 HIP 的比较
    • 根据固体电解质的种类采用适当的方法
    • 电极/电解质层的緻密化过程
    • 复合电极和隔膜的製造
    • 层压和堆迭过程
    • 浆料/溶液浇注法
    • 挤出过程
    • 流延工艺
    • 电解液注入工艺
  • 电池製造过程
    • 常见的 LIB 製造工艺
    • 全固态电池:阴极製造
    • 全固态电池:阳极製造
    • 固态电池:电池製造
    • 固体细胞:细胞调节
    • 固体细胞:细胞处理成本
    • Solid Cell:工艺比较
    • 电池製造的整体流程
    • 固体电解质隔膜製造工艺流程
    • 固体电解质隔膜製造工艺详情
    • 固体电解质隔膜(复合阴极)的製造工艺
    • 阳极製造工艺流程
    • 阳极製造过程的细节
    • 锂箔製造工艺
    • 复合阴极:主要製造工艺流程
    • 复合阴极製造工艺(详情)
    • 复合阴极製造工艺及设备
    • 电芯组装主要工艺流程
    • 电芯组装的主要过程(详情)
    • 电池组装:堆栈製造过程
    • 各製造工艺优缺点比较
    • 氧化物固体电解质电池的製造工艺
    • 通过 LIB 工艺为 SSB 製造阴极和阳极
    • 使用 LIB 工艺对固体细胞进行后处理
  • 电池製造方法
    • 平压机和辊压机的局限性
    • HIP(热等静压)和热压机的区别
    • 比较:传统烧结法固体电解质与 HIP
    • 正极材料的湿法製造方法
    • 阴极活性材料表面涂层
    • 活性材料复合物的形成和球形的形成

第6章主要公司製造技术

  • TOYOTA
  • HONDA
  • Nissan
  • SES
  • Solid Power
  • Blue Solution
  • QuantumScape
  • ProLogium
  • Johnson Energy Storage
  • TaiyoYuden
简介目录
Product Code: 188

Title:
<2023> The Present and Future of All Solid-State Battery Manufacturing Technology

(Subtitle: In-depth Analysis on Manufacturing Technology and R&D Trend of Major Companies)

The performance of lithium-ion battery (LIB), most widely used today, has been improved through continuous technology development propped up with an explosive demand in new electronic devices and electric vehicles. Particularly, the energy density has been dramatically increased from 80Wh/kg in the nascent stage to 300Wh/kg of these days. However, a high energy density implies a possible risk of fire or explosion. Lithium-ion battery may have an explosion triggered bWy internal overheating, secondary heat release from outside, and electrical defect caused by mechanical damage, excessive discharging, and overcharging.

To prevent such risk, all solid-state battery to which solid electrolyte is applied has become regarded as a next-generation battery technology. Megatrends in all solid-state battery can be summarized as follows: excellent safety; high energy density; high power output; wide range of workable temperature; and simple battery structure. Thanks to these properties, all solid-state battery can be free from explosion risks. In addition, solid electrolyte has a better ionic conductivity than liquid electrolyte when the temperature is below 0°C or between 60~100°C.

According to market forecast by SNE Research, the global all solid-state battery market posted a high growth of 180%, reaching approx. 27.5 million dollar in 2022 and is expected to form a huge market worth of approx. 40 billion dollars in 2030. The Korean government also sees the next decade to be a turning point for countries to determine their positions in the global LIB market. Along with the announcement of <2030 K-Battery Development Strategy>, the government has been providing support for technology development with an aim to achieve the commercialization of all solid-state battery in 2027.

To brace for a rapid paradigm shift from lithium-ion battery to all solid-state battery, it is necessary to take an preemptive measure to carry out deep-dive research on key ASB materials and development of mass production technology. Meanwhile, the expected time frame for ASB commercialization has been postponed to 2030 because companies have not exerted sufficient effort to develop related materials and the production technology has not been fully established yet. Given all these circumstances, this report aims to present the cell configuration of all solid-state battery of which possibility in commercialization is highest. We identify the issues related to materials and manufacturing technology and then propose feasible solutions to those issues.

In addition, we analyze announcements and patent applications by major companies regarding the development of all solid-state battery to learn more about their manufacturing technology. Based on a deep-dive analysis on the manufacturing technology and processes, we identify their advantages/disadvantages and try to find suitable manufacturing processes for all solid-state battery.

Strong Points:

  • 1. All solid-state battery technology trend and market outlook
  • 2. Solid electrolyte-related issues and solutions
  • 3. Cell configuration and issues to consider in case of apply solid electrolyte to battery
  • 4. Comparison of all-solid-state battery cell manufacturing technology and process
  • 5. Trend of manufacturing technology by major companies such as Toyota, SES, Solid Power

Table of Contents

1. All-Solid-State Battery Overview

  • 1.1. All-Solid-State Battery (ASB)
    • 1.1.1. Limitations in LIB
    • 1.1.2. Necessity for All-solid-state Battery Development
    • 1.1.3. Application of All-solid-state Battery
    • 1.1.4. All-solid-state Battery Market Outlook
    • 1.1.5. All-solid-state Battery Patent Application Status by Country
    • 1.1.6. All-solid-state Battery Paper Publication Status by Country
  • 1.2. All-Solid-State Battery Solid Electrolyte
    • 1.2.1. Solid Electrolyte Type and Composition
    • 1.2.2. Solid Electrolyte Major Players by Type
    • 1.2.3. Solid Electrolyte Major Players' Trend
    • 1.2.4. Solid Electrolyte Patent Application Status by Type
    • 1.2.5. Inorganic Solid Electrolyte Patent Application Status by Type
  • 1.3. All-Solid-State Technology Trend
    • 1.3.1. OEMs' R&D and Response Status
    • 1.3.2. Material Parts Developers' R&D and Response Status
    • 1.3.3. Battery Makers' R&D and Response Status
    • 1.3.4. Battery Makers (OEMs) Response Status by Solid Electrolyte
    • 1.3.5. Expected ASB Production Timeline and Energy Density by Battery Makers
  • 1.4. All-Solid-State Battery Market Outlook
    • 1.4.1. Market Outlook by Research Firm
    • 1.4.2. Market Outlook by Electrolyte Type
    • 1.4.3. Market Expansion Stage
    • 1.4.4. Solid Electrolyte Market by Type
    • 1.4.5. Solid Electrolyte Market Share Outlook by Type

2. Solid Electrolyte

  • 2.1. Oxide-based Solid Electrolyte
    • 2.1.1. Properties of Oxide-based Electrolyte
    • 2.1.2. Related Properties of Oxide-based Electrolyte
    • 2.1.3. Ionic Conductivity and Applications of Oxide Solid Electrolyte by Type
    • 2.1.4. NASICON-based
    • 2.1.5. Garnet-based
    • 2.1.6. Perovskite-based
    • 2.1.7. Major Issues of Oxide Electrolyte
    • 2.1.8. Specific Issues and Solutions of Oxide Electrolyte
  • 2.2. Sulfide-based Solid Electrolyte
    • 2.2.1. Features of Sulfide-based Electrolyte: Advantages
    • 2.2.2. Features of Sulfide-based Electrolyte: Disadvantages
    • 2.2.3. Features of Sulfide-based Electrolyte
    • 2.2.4. Ionic Conductivity and Application of Sulfide-based Solid Electrolyte by Type
    • 2.2.5. LPS-based
    • 2.2.6. LPS-based: crystal structure
    • 2.2.7. Thio-LISICON based
    • 2.2.8. LGPS-based
    • 2.2.9. LGPS-based : Structure and ionic conductivity
    • 2.2.10. Agyrodites
    • 2.2.11. Specific Issues and Solutions for Sulfide-base Electrolyte
  • 2.3. Polymer Solid Electrolyte
    • 2.3.1. Types and Properties of Polymer Matrix
    • 2.3.2. Types and Benefit/Shortcomings of Polymer Electrolyte
    • 2.3.3. Features of Polymer Electrolyte
    • 2.3.4. Issues and Solutions of Polymer Electrolyte
  • 2.4. Compatibility of Solid Electrolyte
    • 2.4.1. Issues with ASB Cell to Consider
    • 2.4.2. Cathode-Electrolyte Compatibility Issue
    • 2.4.3. Anode-Electrolyte Compatibility Issue

3. All-Solid-State Battery Electrodes

  • 3.1. Cathode
    • 3.1.1. Cathode Active Material Applied to All-Solid-State Battery
    • 3.1.2. Trend in Cathode Active Material
    • 3.1.3. Cathode and Compound Cathode processing
  • 3.2. Anode
    • 3.2.1. Silicon Anode
    • 3.2.2. Si/Graphite Anode
    • 3.2.3. Lithium Anode
    • 3.2.4. Lithium Metal Anode processing
    • 3.2.5. Anodeless
    • 3.2.6. Thin film or anode-less application
    • 3.2.7. Lithium Metal and Silicon Anode processing
    • 3.2.8. Comparison of Anode-less and Other Anodes
    • 3.2.9. Comparison of production method for lithium metal anode and silicon anode

4. All Solid State Battery Cell

  • 4.1. Manufacturing of solid state batteries
    • 4.1.1. Solid Electrolyte processing
    • 4.1.2. Cell Assembly
    • 4.1.3. Cell Finishing
    • 4.1.4. Comparison of manufacturing process of Solid state batteries and LIBs (1)
    • 4.1.5. Comparison of manufacturing process of Solid state batteries and LIBs (2)
    • 4.1.6. Material cost of solid state batteries
    • 4.1.7. Manufacturing cost of solid state battery cells
    • 4.1.8. Cost Comparison of Solid Electrolytes for Solid State Batteries
    • 4.1.9. Promising Concept of Solid State Battery Cell
    • 4.1.10. Manufacturing of solid state battery cells
  • 4.2. Oxide-based Solid State Batteries
    • 4.2.1. Most promising cell configuration
    • 4.2.2. Considerations in terms of cell structure
    • 4.2.3. Considerations for Battery Production
    • 4.2.4. Key Performance Indicators
    • 4.2.5. Changes in Cell Concept
  • 4.3. Sulfide-based Solid State Batteries
    • 4.3.1. Cell Configuration
    • 4.3.2. Considerations in terms of cell structure
    • 4.3.3. Considerations for Battery Production
    • 4.3.4. Key Performance Indicators
    • 4.3.5. Structure (Silicon anode applied)
    • 4.3.6. Considerations in terms of cell structure when applying Si/C composite anode
    • 4.3.7. Considerations for cell production when applying Si/C composite anode
    • 4.3.8. Key performance indicators when applying Si/C composite anode
  • 4.4. Polymer-based Solid State Batteries
    • 4.4.1. Configuration of polymer solid state batteries
    • 4.4.2. Considerations in terms of cell structure
    • 4.4.3. Considerations for cell production
    • 4.4.4. Key performance indicators
  • 4.5. Cell Energy Density
    • 4.5.1. Assumptions for Base and Advanced Version of Cell Materials
    • 4.5.2. Weight and volume energy density
    • 4.5.3. Expected scenario and Roadmap

5. Manufacturing Technology of All Solid State Batteries

  • 5.1. Laboratory Cell Production
    • 5.1.1. Laboratory Level Cell Production
    • 5.1.2. Powder pressing Cell Production
    • 5.1.3. Three-electrode cell production process by using powder pressing
    • 5.1.4. Coin Cell Production Process
    • 5.1.5. All solid state battery roadmap of Japan NEDO
    • 5.1.6. Pouch Cell Production Process: NEDO Standard Cell
    • 5.1.7. Pouch Cell Production Process : NEDO demonstration cell
    • 5.1.8. Production of NEDO Large Area Laminated Demonstration Cell
    • 5.1.9. First Generation Solid State Demonstration Cell LIB
    • 5.1.10. Japan NEDO : Next Generation Solid State Demonstration Cell LIB
  • 5.2. Cell Manufacturing Technology
    • 5.2.1. Advantages and disadvantages as per solid state battery type
    • 5.2.2. Suitable manufacturing method according to solid electrolyte type
    • 5.2.3. Comparison of CIP, WIP, HIP
    • 5.2.4. Suitable methods according to solid electrolyte type
    • 5.2.5. Densification process of electrode/electrolyte layer
    • 5.2.6. Production of composite electrodes and separators
    • 5.2.7. Lamination & Stacking Process
    • 5.2.8. Slurry/solution casting process
    • 5.2.9. Extrusion process
    • 5.2.10. Tape casting process
    • 5.2.11. Electrolyte infusion process
  • 5.3. Cell Manufacturing Process
    • 5.3.1. Common LIB production process
    • 5.3.2. Solid state cells : Production of cathode
    • 5.3.3. Solid state cells : Production of anode
    • 5.3.4. Solid state cells : Production of cell
    • 5.3.5. Solid state cells : Cell conditioning
    • 5.3.6. Solid state cells : Cell processing cost
    • 5.3.7. Solid state cells : Process comparison
    • 5.3.8. Entire Flow of Cell Production
    • 5.3.9. Solid Electrolyte Separator Manufacturing Process Flow
    • 5.3.10. Details of Solid Electrolyte Separator Manufacturing Process
    • 5.3.11. Manufacturing process of solid electrolyte separator (on composite cathode)
    • 5.3.12. Anode production process flow
    • 5.3.13. Details of anode production process
    • 5.3.14. Lithium foil manufacturing process
    • 5.3.15. Composite Cathode : Main production process flow
    • 5.3.16. Composite cathode production process (in detail)
    • 5.3.17. Composite cathode production process and equipement
    • 5.3.18. Main process flow of cell assembly
    • 5.3.19. Main process of cell assembly (in detail)
    • 5.3.20. Cell assembly : Stack production process
    • 5.3.21. Comparison of advantages / disadvantages of each manufacturing process
    • 5.3.22. Production Process of Oxide Solid Electrolyte-Applied Cells
    • 5.3.23. Manufacture of cathode and anode for SSB by using LIB process
    • 5.3.24. Post-Process of Solid State Cells by using LIB Process
  • 5.4. Cell manufacturing method
    • 5.4.1. Limits of plane press and roll press
    • 5.4.2. Difference of HIP(Hot Isostatic Pressing) and Hot Pressing
    • 5.4.3. Comparison: solid electrolyte treated by conventional sintering method vs HIP
    • 5.4.4. Wet manufacturing method of cathode material
    • 5.4.5. Coating the surface of cathode active material
    • 5.4.6. Forming active material composite and shaping spherical form

6. Manufacturing Technology in Major Companies

  • 6.1. TOYOTA
    • 6.1.1. Identifying cause of performance degradation of Toyota's solid state battery
    • 6.1.2. Performance degradation in long cycle
    • 6.1.3. Toyota's counter-measures for the performance degradation
    • 6.1.4. Counter-measures and Solutions
    • 6.1.5. Toyota's Step of Applying Solid State Batteries
    • 6.1.6. Toyota's Solid State Battery Manufacturing: Pressing
    • 6.1.7. Toyota's Solid State Battery Manufacturing : Sublimable filler
    • 6.1.8. Toyota's Solid State Battery Manufacturing : HIP
    • 6.1.9. Toyota's Solid State Battery Manufacturing : Resin packaging
  • 6.2. HONDA
    • 6.2.1. Honda's Direction of Solid State Cell Manufacturing
    • 6.2.2. Honda's Direction of Solid State Cell Manufacturing
    • 6.2.3. Honda's Solid State Battery Manufacturing Process: Mixing
    • 6.2.4. Honda's Solid State Battery Manufacturing Process: Electrode Coating
    • 6.2.5. Solid State Battery Manufacturing Process : Bonding roll pressing
    • 6.2.6. Solid State Battery Manufacturing Process : Electrode slitting
    • 6.2.7. Solid State Battery Manufacturing Process : Bonding roll pressing
    • 6.2.8. Solid State Battery Manufacturing Process : Stacking
    • 6.2.9. Solid State Battery Manufacturing Process : Tab welding, assembly, sealing
    • 6.2.10. Solid State Battery Manufacturing Process : Aging, Inspection
  • 6.3. Nissan
    • 6.3.1. Direction of Solid State Cell Manufacturing
    • 6.3.2. Overview of Solid State Battery Manufacturing Process
    • 6.3.3. Solid State Battery Manufacturing Process
  • 6.4. SES
    • 6.4.1. SES Overall cell structure
    • 6.4.2. Cell Performance
    • 6.4.3. SES cell P/P line major processes
  • 6.5. Solid Power
    • 6.5.1. Solid state battery structure and development line-up
    • 6.5.2. Solid state cell manufacturing process
    • 6.5.3. Roadmap of Si Anode Solid State Batteries
    • 6.5.4. Roadmap of Li Anode Solid State Batteries
    • 6.5.5. Solid State Battery Production Roadmap
  • 6.6. Blue Solution
    • 6.6.1. LMP® Solid state battery structure
    • 6.6.2. Manufacturing process of Blue Solution
    • 6.6.3. Solid state battery roadmap
  • 6.7. QuantumScape
    • 6.7.1. Cell performance of solid state batteries
    • 6.7.2. Solide state cell manufacturing process and cell characteristics
    • 6.7.3. Solide state battery roadmap
  • 6.8. ProLogium
    • 6.8.1. Solid state battery cell structure
    • 6.8.2. Solid state battery structure and performance
    • 6.8.3. Solid state battery production line
    • 6.8.4. Solid state battery production process
  • 6.9. Johnson Energy Storage
    • 6.9.1. Cell information and related characteristics
    • 6.9.2. Slurry coating process
    • 6.9.3. Co-extrusion process
  • 6.10. TaiyoYuden
    • 6.10.1. MLCC Type solid state cell structure
    • 6.10.2. MLCC Type solid state cell production process