锂离子电池阳极材料:技术趋势·市场预测(~2030年)
市场调查报告书
商品编码
1230334

锂离子电池阳极材料:技术趋势·市场预测(~2030年)

<2023> Lithium Ion Battery Anode Technology Trend and Market Forecast (~2030)

出版日期: | 出版商: SNE Research | 英文 507 Pages | 商品交期: 请询问到货日

价格
简介目录

目前,石墨主要用作锂二次电池的负极材料。从1991年索尼首次将锂二次电池商业化到现在,石墨一直是负极材料的主导材料。虽然阴极材料和分离膜等其他材料发生了变化,但石墨在过去 20 年来几乎保持不变。

石墨大致分为天然石墨和人工石墨。天然石墨的原料矿石产自石墨矿,含石墨量约5%~15%。为了使用石墨作为锂二次电池的负极材料,其作为电池级的纯度必须达到99.5%或更高。为了达到此纯度水平,需要透过选矿和化学处理从开采的天然石墨矿石中去除杂质。它也可以被球化或涂沥青。

本报告提供锂离子电池阳极材的技术市场调查,彙整阳极材料的种类,製造技术,开发趋势,市场规模的转变·预测,主要製造商的分析等资讯。

目录

报告概要

第1章 阳极材料的技术与开发趋势

  • 阳极材料的种类
    • 锂金属
    • 碳阳极材料
    • 阳极材料的开发情形

第2章 碳阳极材料

  • 碳阳极材料概要
  • 碳阳极材料的製造
    • 气相炭化
    • 液相炭化
    • 固相炭化
  • 软体碳阳极材料
    • 结构的特征
    • 电化学特性
    • 电极反应机制
    • 製造方法
    • 人造石墨
    • 天然石墨
    • 低温可塑化碳
    • 其他的材料
  • 硬碳阳极
    • 结构的特征
    • 电化学特性
    • 电极的反应机构
    • 製造方法
  • 废电池的碳阳极的收集与回收

第3章 合金阳极材料

  • 合金阳极材料概要
  • 合金阳极材料的特性
  • 合金阳极的重大的问题和解决的办法
    • 主要的问题
    • 金属复合阳极
    • 金属-碳复合阳极
  • SiOx阳极材料
    • 结构的特征
    • 电化学特性
    • 製造方法
    • pre锂化流程的应用
  • Si阳极的实用化相关研究
    • 电化学举动的差异
    • Si系电极及Si/石墨复合电极
  • 其他的Si阳极材料
    • 3D多孔质Si
    • Si奈米碳管
    • 金属/合金薄膜阳极

第4章 复合阳极材料

  • 氧化物系阳极材料
  • 氮化物为基础的阳极材料
  • 2D平面结构无机化合物 (Mxenes)

第5章 高功率阳极材料

  • 高功率阳极材料概要
  • 插层材料
    • 碳材料
    • LTO (Li4Ti5O12)
  • 合金材料
  • 过渡材料
  • 奈米结构微粒子
    • 奈米结构微碳材料
    • 奈米结构微Li4Ti5O
    • 奈米结构微Si-碳材料复合活物质
  • 多通路结构石墨
  • Si-石墨混合材料 (SEAG)
  • 石墨烯-SiO2材料 (石墨烯球)
  • 阳极的急速充电
    • 阳极的影响要素
    • 电极的影响要素
    • 大电池製造商的急速充电技术设计
  • 整体概述·今后展望

第6章 锂金属阳极

  • 锂金属阳极概要
  • 锂金属阳极的R&D情形
    • ASEI (人工SEI)
    • 新结构
    • 混合结构
    • 电解质的改性
  • 锂金属阳极的适用的问题点与展望
  • 无阳极的锂离子电池

第7章 阳极的安全性的影响

  • 阳极的热稳定性
  • 急速充电的时候的安全性

第8章 锂离子电池阳极材料市场现状与展望

  • 需求情形:各国
  • 需求情形:各材料
  • 市场情形:各供应商
  • 需求情形:各LIB製造商
    • SDI
    • LGC
    • SKI
    • Panasonic
    • CATL
    • ATL
    • BYD
    • Lishen
    • Guoxuan
    • AESC
    • CALB
  • 阳极材料的生产能力的展望
  • 需求预测:不同材料
  • 阳极材料价格的转变
  • 阳极材料的市场规模的展望

第9章 阳极材料製造商状况

  • 韩国的阳极材料供应商
    • Posco Chemical
    • Daejoo
    • Aekyung
    • MKE
    • Iljin
    • EG
    • PCT
    • LPN
    • Hansol
    • Dongjin
  • 日本的阳极材料供应商
    • Hitachi
    • Mitsubishi
    • Nippon Carbon
    • JFE
    • Tokai Carbon
    • Showa Denko
    • Shinetsu
    • Kureha
  • 中国的阳极材料供应商
    • BTR
    • Shanshan
    • Zichen
    • Shinzoom
    • XFH
    • ZETO
    • Sinuo
    • Chuangya
    • SHANGTAITECH
    • KAIJIN

第10章 参考文献

简介目录
Product Code: 194

Currently, graphite is mostly being used as an anode material for lithium secondary batteries. It means that from 1991 - when Sony firstly commercialized lithium secondary batteries - until now, graphite has firmly maintained its throne of anode materials. This has nearly been steadfast even for the last 20 years, while other materials, including cathode materials, separation membranes, etc, have changed.

Graphite is largely divided into natural and artificial graphite. Raw ores of natural graphite are yielded with graphite containing about 5-15% in graphite mines. In order for graphite to be used as an anode material for lithium secondary batteries, it must obtain the purity of at least 99.5% as a battery grade. To increase the purity up to such a degree, the dug natural graphite ore should go through beneficiation, chemical processing, etc. to remove impurities. It can sometimes be spheroidized and pitch-coated.

Artificial graphite, on the other hand, is the graphite generated by heating carbon precursors, such as petroleum, coal tar, and coke, whose starting materials are not natural minerals, at the high temperature higher than 2800°C.

Other than graphite, other anode materials include soft carbon and hard carbon, which are manufactured by heat-treating coke, consisting of carbon, at 1000-1200°C, relatively low temperature. Of these, hard carbon has had increasing importance as an anode material for EVs due to its excellent power characteristics.

For the composite-based, LTO, the oxide composite-based, is representative, and the metal composite-based includes Sn-Co-C and others. In addition, in the case of an anode using graphite, an electrode is sometimes manufactured by partially mixing silicon- and SiOx-based compounds with graphite to increase capacity.

In order to increase the energy density of Li secondary batteries, research on Li-metal as the ultimate anode material is also being conducted, and it is expected that Li metal is mainly used as an anode material for all solid batteries (ASBs), the next-generation battery.

Table of Contents

Report Overview

Chapter I. Anode Material Technology and Development Trend

  • 1.1. Introduction
  • 1.2. Anode Material Types
    • 1.2.1. Li-metal
    • 1.2.2. Carbon Anode Material
    • 1.2.3. Anode Material Development Status

Chapter II. Carbon Anode Material

  • 2.1. Carbon Anode Material Overview
  • 2.2. Carbon Anode Material Manufacturing
    • 2.2.1. Vapor-phase carbonization
    • 2.2.2. Liquid-phase carbonization
    • 2.2.3. Solid-phase carbonization
  • 2.3. Soft Carbon Anode Material
    • 2.3.1. Structural Characteristics
    • 2.3.2. Electrochemical Characteristics
    • 2.3.3. Electrode Reaction Mechanism
    • 2.3.4. Manufacturing Methods
    • 2.3.5. Artificial Graphite
    • 2.3.6. Natural Graphite
    • 2.3.7. Low-temperature Plasticized Carbon
    • 2.3.8. Other Materials
  • 2.4. Hard Carbon Anode
    • 2.4.1. Structural Characteristics
    • 2.4.2. Electrochemical Characteristics
    • 2.4.3. Electrode Reaction mechanism
    • 2.4.4. Manufacturing Methods
  • 2.5. Carbon Anode Recovery and Recycling from Wasted Battery

Chapter III. Alloy Anode Material

  • 3.1. Alloy Anode Material Overview
  • 3.2. Alloy Anode Material Characteristics
  • 3.3. Alloy Anode Material Issues and Solutions
    • 3.3.1. Key Issues
    • 3.3.2. Metal-composite Anode
    • 3.3.3. Metal-Carbon Composite Anode
  • 3.4. SiOx Anode Material
    • 3.4.1. Structural Characteristics
    • 3.4.2. Electrochemical Characteristics
    • 3.4.3. Manufacturing Methods
    • 3.4.4. Prelithiation Process Application
  • 3.5. Study on Actual Application of Si Anode
    • 3.5.1. Difference of Electrochemical Behavior
    • 3.5.2. Si-based Electrode and Si/Graphite Composite Electrode
  • 3.6. Other Si Anode Material
    • 3.6.1. 3D Porous Si
    • 3.6.2. Si Nanotube
    • 3.6.3. Metal/Alloy Thin-film Anode

Chapter IV. Compound Anode Material

  • 4.1. Oxide-based Anode Material
  • 4.2. Nitride -based Anode Material
  • 4.3. 2D planar structure inorganic compound (Mxenes)

Chapter V. High-power Anode Material

  • 5.1. High-power Anode Material Overview
  • 5.2. Intercalation Materials
    • 5.2.1. Carbon Material
    • 5.2.2. LTO(Li4Ti5O12)
  • 5.3. Alloy Material
  • 5.4. Transition Material
  • 5.5. Nano-structure Microparticle
    • 5.5.1. Nano-structure Micro Carbon Material
    • 5.5.2. Nano-structure Micro Li4Ti5O
    • 5.5.3. Nano-structure Micro Si-Carbon Material Composite Active Material
  • 5.6. Multi Channel Structure Graphite
  • 5.7. Si-Graphite Hybrid Material(SEAG)
  • 5.8. Graphene-SiO2 Material (Graphene Ball)
  • 5.9. Fast-charging from Anode Perspective
    • 5.9.1. Anode (Active Material) Influence Factors
    • 5.9.2. Electrode Influence Factors
    • 5.9.3. Fast-charging Technology Design of Major Battery Makers
  • 5.10. Summary and Future Outlook

Chapter VI. Li-metal Anode

  • 6.1. Li metal Anode Overview
  • 6.2. Li metal Anode R&D Status
    • 6.2.1. ASEI (Artificial SEI)
    • 6.2.2. New Structure
    • 6.2.3. Hybrid Structure
    • 6.2.4. Electrolyte Modification
  • 6.3. Li Metal Anode Application Issues and Outlook
  • 6.4. Anode-Free Lithium-Ion Battery

Chapter VII. Anode Influence on Safety

  • 7.1. Thermal Stability of Anode
  • 7.2. Safety during Fast Charging

Chapter VIII. LiB Anode Material Market Status and Outlook

  • 8.1. Demand Status by Country
  • 8.2. Demand Status by Material
  • 8.3. Market Status by Supplier
  • 8.4. Demand Status by LIB Maker
    • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC/CALB
  • 8.5. Anode Material Production Capacity Outlook
  • 8.6. Demand Outlook by Material
  • 8.7. Anode Material Price Trend
  • 8.8. Anode Material Market Size Outlook

Chapter IX. Anode Material Manufacturers Status

  • 9.1. Korean Anode Material Suppliers
    • Posco Chemical/Daejoo/Aekyung/MKE/Iljin/EG/PCT/LPN/Hansol/Dongjin
  • 9.2. Japanese Anode Material Suppliers
    • Hitachi/Mitsubishi/Nippon Carbon/JFE/Tokai Carbon/Showa Denko/Shinetsu/Kureha
  • 9.3. Chinese Anode Material Suppliers
    • BTR/Shanshan/Zichen/Shinzoom/XFH/ZETO/Sinuo/Chuangya/SHANGTAITECH/KAIJIN

Chapter X. References