电池劣化的缓解/预测/诊断、技术现况及相关企业
市场调查报告书
商品编码
1250021

电池劣化的缓解/预测/诊断、技术现况及相关企业

<2023> Mitigation/ Prediction/ Diagnosis of Battery Degradation; Technology Status and Related Companies

出版日期: | 出版商: SNE Research | 英文 537 Pages | 商品交期: 请询问到货日

价格
简介目录

电池老化是电池性能恶化的根本原因。特别是大容量、高输出的电池如果严重劣化,效能就会下降,因此需要对电池劣化有深入的了解。

目前,针对劣化,废弃电池诊断技术和快速充电技术的开发正在取得进展,市场正在形成。

诊断技术对于废弃电池的再利用至关重要。近年来,多家OEM厂商一直致力于废弃电池再利用业务,不少企业也以多种方式准备废电池再利用新业务。

电动车需要较长的电池寿命和较短的充电时间才能超越传统汽油/柴油引擎汽车的市场份额。这些是推动电池和电动车市场快速扩张的基本需求,因此缓解和抑制在恶劣条件下劣化的技术至关重要。

本报告对韩国电池产业进行了调查和分析,介绍了减缓劣化的策略以及诊断和预测劣化的各种技术。我们也提供国内外公司、市场和行业趋势、专利和热点技术的资讯。

目录

第一章简介

  • 技术竞争加剧
  • 使用后出现问题
  • 环境污染问题
  • 快充问题

第二章 锂离子电池

  • 零件

第3章 恶化

  • 什么是恶化?
  • 恶化机制

第四章 材料

  • 正极
    • 正极材料引起的劣化
    • 恶化/缓解因素
    • 恶化的影响
  • 负极
    • 负极材料引起的劣化
    • 恶化/缓解因素
    • 恶化的影响
  • 电解质
  • 惰性材料(黏合剂、集电器、隔膜和其他组件)的劣化
  • 其他劣化因素(老化、环境温度、电池设计、使用者等)
  • 降解机制之间的关係
    • 正向回馈场景
    • 负回馈场景

第五章 细胞劣化的影响

  • 性能下降

第六章 电池劣化缓解策略

  • 活性物质的改良
    • 正极活性物质
    • 负极活性物质
    • SEI
  • 充电技术
    • 恆压充电方式(CV)
    • 恆定电流充电方式(CC)
    • 恆定电流/恆压充电方式(CC-CV)
    • 恆功率(CP)法
    • 恆定功率/恆压充电方式(CP-CV)
    • 快速充电方式
    • 变电流衰减充电法(VCD)
    • 多级恆定电流充电方式(MCC)
    • 脉衝充电方式
    • 涓流充电方式

第7章 电池劣化诊断/预测技术

  • 分析方法:依劣化类型
  • 电化学分析技术
  • 非基于模型的分析
  • 基于模型的分析
  • 使用机器学习/人工智慧进行诊断和预测
  • 事后分析

第八章 电池劣化相关企业状况

  • 韩国(20家)
  • 北美(15家公司)
  • 欧洲(5家公司)
  • 日本(5家)
  • 中国(10家)
  • 其他

第九章市场现况与展望

  • 电池管理系统
    • BMS全球市场展望(2021-2030)
    • BMS供应商:依电动车车型分类(2012-2024)
  • 快速充电器
    • 全球市场状况
    • 美国快速充电器市场展望(2021-2030)
    • 现况:美国主要城市
    • 韩国快速充电器状况:依地区划分

第10章 电池劣化抑制/诊断相关专利(2017年-2021年)

  • 韩国专利

第11章 最新劣化诊断技术

  • 电荷转移电阻行为分析
  • 温度不均匀导致的局部镀锂分析
  • 电压降分析
  • 增量容量分析
  • 差分电压分析
  • 快充条件下石墨基负极界面分析
  • 负极涂层材料的开发及阻抗分析

第十二章 参考资料

简介目录
Product Code: 197

Battery degradation is the root cause of performance degradation of batteries. High-capacity and high-power batteries in particular require deep understanding about the degradation because its performance gets worse due to severe degradation.

Currently, concerning the degradation, development of diagnosis technology for waste batteries and fast charging has been carried out and the market has been formed.

Diagnosis technology is essential for reuse of waste batteries. Several OEMs have engaged in the business of reuse of waste batteries over the past several years, and many companies are preparing new businesses by using various applications where waste batteries can be reused.

Long battery life and short charging time are required for EVs to overcome the market share of traditional gasoline/diesel engine vehicles. These are fundamental needs that allow the battery and EV market to expand rapidly, and for this reason, mitigation/suppression technology against degradation under severe conditions is essential.

This report is divided into 11 chapters. Chapter 1-3 provides basic knowledge about battery degradation and needs of the technology, chapter 4-5 describe causes and effect of degradation, chapter 6-7 describe mitigation strategy for degradation and degradation diagnosis/prediction technology, chapter 10-9 describe patents and latest technology.

This report provides in-depth understanding of battery degradation, and introduces strategy to mitigate degradation and various technologies to diagnose and predict degradation. It also provides detailed information on Korean and international companies, markets and industry trends, and patents and notable technologies.

Table of Contents

1. Brief Introduction

  • 1.1. Intensified Technology Competition
  • 1.2. Issues after use
  • 1.3. Environmental pollution issue
  • 1.4. Fast Charging issues

2. Lithium-ion Batteries

  • 2.1. Components

3. Degradation

  • 3.1. What is degradation?
  • 3.2. Degradation mechanism

4. Materials

  • 4.1. Cathode
    • 4.1.1. Degradation due to cathode materials
    • 4.1.2. Degradation/Mitigation Factors
    • 4.1.3. Effects of Degradation
  • 4.2. Anode
    • 4.2.1. Degradation due to anode material
    • 4.2.2. Degradation/Mitigation Factors
    • 4.2.3. Effects of degradation
  • 4.3. Electrolyte
  • 4.4. Degradation of inactive materials (binder, current collector, separator, other components.)
  • 4.5. Other degradation factors (ageing conditions, ambient temperature, battery design, users, etc.)
  • 4.6. Connection between degradation mechanisms
    • 4.6.1. Positive-feedback scenario
    • 4.6.2. Negative-feedback scenario

5. Effects of Cell Degradation

  • 5.1. Performance Degradation

6. Battery degradation mitigation strategy

  • 6.1. Improvement of active material materials
    • 6.1.1. Cathode active materials
    • 6.1.2. Anode active materials
    • 6.1.3. SEI
  • 6.2. Charging Techniques
    • 6.2.1. Constant voltage charging method (CV)
    • 6.2.2. Constant current charging method (CC)
    • 6.2.3. Constant current/constant voltage charging method (CC-CV)
    • 6.2.4. Constant power (CP) method
    • 6.2.5. Constant power/constant voltage charging method (CP-CV)
    • 6.2.6. Boost charging method
    • 6.2.7. Varying current decay charging method (VCD)
    • 6.2.8. Multi-stage constant current charging method (MCC)
    • 6.2.9. Pulse charging method
    • 6.2.10. Trickle charging method

7. Battery degradation diagnosis/prediction technology

  • 7.1. Analysis techniques by degradation mode
    • 7.1.1. Structural change and decomposition analysis of active materials
    • 7.1.2. Particle destruction analysis
    • 7.1.3. Analysis of SEI layer growth
    • 7.1.4. Li plating analysis
  • 7.2. Electrochemical analysis techniques
    • 7.2.1. Cell voltage and capacity analysis
    • 7.2.2. Resistance Analysis
  • 7.3. Non-Model Based Analysis
    • 7.3.1. Battery internal factor diagnosis
    • 7.3.2. Battery external factor diagnosis
  • 7.4. Model-based analysis
    • 7.4.1. Types of Models
    • 7.4.2. SEI layer growth
    • 7.4.3. Li plating
    • 7.4.4. Structural change and decomposition of cathode
    • 7.4.5. Particle destruction
    • 7.4.6. Silicon additives
  • 7.5. Diagnosis and prediction by using machine learning/artificial intelligence
    • 7.5.1. Background of diagnostic technology by ML/AI
    • 7.5.2. Performance and safety prediction
    • 7.5.3. Degradation and life prediction
    • 7.5.4. Online estimation technology
  • 7.6. Post-Mortem Analysis
    • 7.6.1. Precautions for cell disassembly
    • 7.6.2. Cell opening procedure and component removal method
    • 7.6.3. Physical analysis technology
    • 7.6.4. Chemical analysis technology
    • 7.6.5. Thermal stability analysis

8. Status of companies related to battery degradation

  • 8.1. Korea (20 companies)
  • 8.2. North America (15 companies)
  • 8.3. Europe (5 companies)
  • 8.4. Japan (5 companies)
  • 8.5. China (10 companies)
  • 8.6. Others

9. Market status and outlook

  • 9.1. BMS
    • 9.1.1. Outlook for BMS global market (2021 - 2030)
    • 9.1.2. BMS suppliers by EV model (2012 - 2024)
  • 9.2. Fast Charger
    • 9.2.1. Global market status
    • 9.2.2. Outlook for US fast charger market (2021 - 2030)
    • 9.2.3. Current status by major US cities
    • 9.2.4. Status of fast chargers by region in Korea

10. Patents for Battery Degradation Suppression/Diagnosis (2017-2021)

  • 10.1. Patents in Korea

11. Latest technology for degradation diagnosis

  • 11.1. Behavior Analysis for Charge Transfer Resistance
  • 11.2. Analysis of local Li plating according to temperature nonuniformity
  • 11.3. IR Drop Analysis
  • 11.4. Incremental Capacity Analysis
  • 11.5. Differential Voltage Analysis
  • 11.6. Graphite-based anode interface analysis under fast charging conditions
  • 11.7. Development of Anode Coating Materials and Impedance Analysis

12. References