锂离子二次电池负极材料技术趋势及市场前景
市场调查报告书
商品编码
1487709

锂离子二次电池负极材料技术趋势及市场前景

<2024> Technology Trends and Market Outlook of Lithium-ion Secondary Battery Anode Materials

出版日期: | 出版商: SNE Research | 英文 607 Pages | 商品交期: 请询问到货日

价格
简介目录

关于二次电池负极材料,以下三个问题仍在继续解决。

(1)硅负极材料因快充问题而扩展

(2) 由于与IRA的关係,中国生产的石墨负极材料无法获得补贴,作为对策,正在寻找中国以外的石墨来源。

(3)新一代电池(钠离子电池、全固态电池)负极材料研发

首先,(1)由于需要透过高比容量和高速充电来提高能量密度,硅负极材料正在大力推广,但最大的问题是硅负极材料平台还没有出现。

目前主流的硅负极材料SiOx和Si-C仍然相当昂贵,与目前正在研发的新技术、新产品、新製造方法相比已经建立了技术和价格优势。目前,全球有超过100家电池製造商、材料製造商、中型公司、创投公司和学术/研究机构正在进行硅负极材料的各种研发和商业化,我们也将看到其他製造方法的出现。 。

接下来,(2)我们将寻找中国以外的石墨负极材料供应商。目前,锂离子电池负极材料98%是石墨,中国企业占石墨供应量的90%以上。根据美国提出的IRA法案,原本决定从2025年1月起,不再向中国等FEOC(外国关注实体)公司生产的含有负极材料的xEV电池提供补贴。因此,我们在2024年5月决定将该条件的激活推迟两年,并从2027年1月开始应用。

儘管还有两年的时间,我们必须紧急寻找国外的石墨负极材料供应商。因此,需要寻找美国或欧洲的石墨公司,但从技术和数量上来说,找到合适的供应商并不容易。

最后,(3)SIB或ASB负极材料的研发。硬碳主要用作钠离子电池的负极材料,钠(Na)取代开采量有限的锂(Li)作为电池中的运输材料。另外,在硅负极材料中,有时会使用多孔硬碳作为奈米硅的载体,硬碳被认为是石墨和硅以外的材料中可用作负极材料的重要材料。

有时会使用碳基材料(石墨、硬碳)和硅作为全固态电池(ASSB)的负极材料,但也不断考虑使用锂金属,如果锂金属据预测,二次电池负极材料的范围将会扩大。我们应该关注硬碳(一种非晶碳材料)和锂负极材料(一种完全金属材料)的趋势。顺应这一趋势,正在研发或部分应用的典型新型负极材料候选包括硅基和锂金属,并且对现有碳基负极材料的改进也在并行进行。

本报告对锂离子二次电池负极材料进行了调查分析,包括各地区硅负极材料企业现状、以硅基材料和锂金属为核心的最新技术趋势、快速充电等技术设计。技术的行业趋势。

目录

索引

报告概要

第1章 负极材料技术状况与开发趋势

  • 简介
  • 负极材料的种类
    • 锂金属
    • 碳基负极材料
    • 负极材料发展现状

第2章 碳系负极材料

  • 碳系负极材料概要
  • 碳系负极材料的製造
    • 气相炭化
    • 液相炭化
    • 固相炭化
  • 软体碳系负极材料
    • 结构特性
    • 电化学性质
    • 电极反应机制
    • 生产方法
    • 人工石墨
    • 天然石墨
    • 低温烧製碳
    • 其他材料
  • 硬碳负极材料
    • 结构特性
    • 电化学性质
    • 电极反应机制
    • 生产方法
  • 废电池碳基负极材料的回收与循环利用

第3章 合金系负极材料

  • 合金系负极材料概要
  • 合金系负极材料的特性
  • 合金系负极材料的问题点和解决的办法
    • 典型问题
    • 金属复合负极材料
    • 金属碳复合负极材料
  • SiOx系负极材料
    • 结构特性
    • 电化学性质
    • 生产方法
    • 预锂化製程的应用
  • Si系负极材料的实用化的相关调查
    • 电化学行为的差异
    • 单硅电极和混合硅/石墨电极
  • 其他的Si系负极材料
  • 3D多孔质硅
    • 硅奈米管
    • 金属/合金薄膜负极材料

第4章 复合负极材料

  • 氧化物基负极材料
  • 氮化物基负极材料
  • 二维层状无机化合物(Mxene)

第5章 高功率负极材料

  • 高功率负极材料概述
  • 插入材料
    • 碳材料
    • LTO (Li4Ti5O12)
  • 合金材料
  • 过渡材料
  • 奈米结构细颗粒
    • 奈米结构微碳材料
    • 奈米结构微型Li4Ti5O
    • 奈米结构微硅碳复合活性材料
  • 多通道结构石墨
  • 硅石墨杂化材料(SEAG)
  • 石墨烯-SiO2材质(石墨烯球)
  • 从负极角度实现快速充电
    • 负极材料的影响因素
    • 电极的影响因素
    • 各大电池厂商的快充技术设计
    • 快速充电负极技术开发实例
  • 结论与展望

第6章 Li金属负极

  • 锂金属负极概述
  • 锂金属负极的研发现状
  • 锂金属负极实际应用的问题与展望
  • 无负极LIB

第7章 负极的安全性的影响

  • 负极的热稳定性
  • 快速充电时的安全性

第8章 全球负极材料的供给情形及预测

  • 负极材料需求预测:依应用分类(2021-2035)
  • 负极材料需求预测:依类型(2021-2035)
  • 负极材料总出货量(供应量):依供应商划分(2021-2024年)
  • 负极材料M/S出货(供应)总数:依供应商分类(2021-2024年)
    • SDI/LGC/SKI/松下/宁德时代/ATL/比亚迪/力神/国轩/AESC/中航锂电
  • 天然石墨 (NG) 负极材料出货量:依供应商划分(2021-2024 年)
  • NG负极材料的出货数量:依供应商划分(2021-2024年)
  • 人造石墨(AG)负极材料的出货量:依供应商划分(2021-2024年)
  • AG负极材料出货量:依供应商划分(2021-2024年)
  • 硅负极材料的出货量和 M/S:按供应商划分(2023 年)
  • 负极材料供应商现况综合分析(2023年)
  • 负极材料供应商NG产能扩充计画及供需展望(2021-2030年)
  • 负极材料供应商AG(SG)产能扩充计画及供需展望(2021-2030年)
  • 负极材料价格展望:按类型划分(2021-2030 年)
  • 负极材料市场规模预测(2021-2030年)

第9章 负极材料需求的现况与展望:LIB各供应商

  • 负极材料的整体需求表现、前景与挑战
  • 主要锂离子电池供应商负极材料需求现况及展望
  • 主要企业供需状况

第10章 石墨系负极材料企业的现状

  • 全球排名前 12 的公司
    • BTR/杉杉/紫辰/凯金/尚泰/新中/新丰华/坤田/东岛/POSCO/Resonac/三菱
  • 中国/日本/韩国的其他公司
    • 日立/三菱/日本碳素/JFE/东海碳素/昭及电工/信越/吴羽
  • 美国/欧洲/其他地区的公司
    • Syrah/Westwater/Talga/NMG/Next source Mat./Mangnis/Renascor/Epsilon/Urbix/Novonix/Anovion

第11章 硅系负极材料企业的现状

  • 日韩硅负极企业
    • Shin-Etsu/JMC(日本金属化学)/Daejoo Electronic Materials/Posco Future M/Posco Silicon Solution(原 TERA TECHNOS)/SKMG14 (SK Materials-Group14)/SK Ultimus (Nexeon)/MK Electronics/Iljin Electric/EG/Hansol Chemical/Innox Advanced Materials (TRS)/FIC New Materials/LPN/Osaka Titanium/TCK (Tokai Carbon Korea)/Truewin (原NM Tech)/Korea Metal Silicon/EN Plus/Lotte Energy Materials (Enwires)/Dongjin Semichem/SJ Advanced Materials/IL Science/S Material/HNS Co., Ltd./Wipinetech/Hana Materials/Grabsil/BSG Materials/Actro/Siri Energy
  • 中国硅负极企业
    • IOPSILION、天目/成都贵宝/iAmetal、北京易金/国轩/新华/金基/杰瑞/华为/浩新科技/桂源/玉岭新能源/浙江立辰/兰溪智德
  • 美国、欧洲等地区硅负极企业
    • Group14(美国)/Nexeon(英国)/Sila Nano(美国)/Amprius(美国)/Enovix(美国)/Elkem(挪威)/Enevate(美国)/Neo Battery(加拿大)/OneD(美国)/Nanograf(美国)/StoreDot(以色列)/Targray(加拿大)/Global Graphene Group(美国)/EO Cell(美国)/ADVANO(美国)/Nanospan(美国)/LeydenJar(荷兰)/Trion Battery(加拿大)/Cenate (挪威)/SiCONA(澳洲)/Alkegen(美国)/pH Matter LLC(美国)/Paraclete Energy(美国)/Himadri Specialty Chem(印度)/E-Magy(荷兰)/Ionblox(美国)/Nanomakers(法国) )/SiLi-ion(美国)/Ionic Mineral Tech(美国)/Ionobell(美国)/Coretec 集团(美国)/Enwires(法国)/FARADPOWER(美国)/SilLion(美国)/Talga(澳洲)/SGL碳SE (德国)

第12章 参考文献

简介目录
Product Code: 222

There are three issues below that continue to be issued regarding anode materials for secondary batteries.

1) Expansion of silicon anode materials due to fast charging issues

2) In relation to IRA, subsidies cannot be applied to Chinese graphite anode materials, and as a countermeasure to this, graphite sourcing sources outside of China are being discovered.

3) R&D on anode materials for next-generation batteries (Sodium-ion batteries, All-solid-state batteries)

First, 1) Silicon anode materials are being driven strongly due to the need for improved energy density and fast charging due to high specific capacity, but the biggest issue is that a dominant silicon anode material platform has not yet emerged.

SiOx and Si-C, which are currently the mainstream silicon anode materials, are still quite expensive, and it is difficult to say that technological and price superiority has yet been established compared to new technologies, products, and manufacturing methods currently being researched or developed. Currently, more than 100 battery companies, material companies, mid-sized companies, start-ups, or academic/research institutes around the world are conducting various research and development and product launches on silicon anode materials, so technologically advanced products and manufacturing methods will emerge in the future. In this report, we investigated these silicon anode material companies in detail.

Second, 2) discovering sourcing sources for graphite anode materials outside of China. Currently, 98% of LIB anode materials are graphite, and Chinese companies account for more than 90% of graphite supply. In accordance with the IRA bill proposed by US, it was initially decided not to provide subsidies for xEV batteries containing anode materials manufactured by companies in foreign countries of concern (FEOC) such as China from January 2025, but it was difficult to apply this in reality. Therefore, in May 2024, they decided to postpone the triggering of these conditions for two years and apply them from January 2027.

Although we have gained two years of time, we must immediately discover sources for graphite anode materials outside of China. Therefore, we need to look for graphite companies in the US or Europe, but it is not easy to find a suitable supplier in terms of technology and quantity. In this report, we also investigated the status of non-Chinese graphite anode material companies in detail, such as in Australia, Europe, and the United States.

Lastly, 3) R&D on SIB or ASB anode materials. Hard carbon is mainly used as the anode material for sodium-ion batteries, which adopted sodium (Na) as a transport material in batteries instead of lithium (Li), which has a limited amount of mining. In addition, in some silicon anode materials, porous hard carbon is used as a support for nano silicon, so hard carbon is considered an important material that can be used as the anode material among materials other than graphite and silicon.

In some cases, carbon-based materials (graphite, hard carbon) or silicon are used as anode materials for all-solid-state batteries (ASSB), but Li-metal is also being continuously reviewed, so if Li-metal is used, the scope of secondary battery anode materials is expected to be expanded. We should be interested in the trend of hard carbon, which is an amorphous carbon material, or lithium anode material, a complete metal. Representative new anode material candidates that are being researched/developed or partially applied in line with this trend include silicon-based and Li metal, and improvements to existing carbon-based anode materials are also being carried out in parallel, and research on anode-free and fast charging technology is actively underway. This report reflects these recent trends and R&D status.

In particular, the latest technological trends centered on silicon-based materials and Li metal were discussed in depth, and the performance improvement of existing and new materials and the R&D status of hybrid products were also examined. This report also looked at industry trends in fast charging technology design and anode-free technology.

In addition, this report analyzed the use of anode materials and SCM of major battery companies in detail for the past three years. Each type (natural graphite, artificial graphite, silicon-based) of supply-chain companies were divided into Tier1, Tier2, and countries, and more than 100 companies were analyzed in detail.

We hope this report will be helpful in analyzing the global secondary battery market, anode material market and in business strategy.

Table of Contents

INDEX

Report Overview

Chapter 1. Anode Material Technology Status and Development Trend

  • 1.1. Introduction
  • 1.2. Types of Anode Material
    • 1.2.1. Li-metal
    • 1.2.2. Carbon-based Anode Material
    • 1.2.3. Anode Material Development Status

Chapter 2. Carbon-based Anode Material

  • 2.1. Overview of Carbon-based Anode Material
  • 2.2. Manufacturing Carbon-based Anode Material
    • 2.2.1. Gas-phase Carbonization
    • 2.2.2. Liquid-phase Carbonization
    • 2.2.3. Solid-phase Carbonization
  • 2.3. Soft Carbon-based Anode Material
    • 2.3.1. Structural Properties
    • 2.3.2. Electrochemial Properties
    • 2.3.3. Electrode Reaction Mechanism
    • 2.3.4. Manufacturing Method
    • 2.3.5. Artificial Graphite
    • 2.3.6. Natural Graphite
    • 2.3.7. Carbon Calcinated in Low Temperature
    • 2.3.8. Other Materials
  • 2.4. Hard Carbon-based Anode Material
    • 2.4.1. Structural Properties
    • 2.4.2. Electrochemical Properties
    • 2.4.3. Electrode Reaction Mechanism
    • 2.4.4. Manufacturing Method
  • 2.5. Recollecting and Recycling of Carbon-based Anode Materials from Waste Batteries

Chapter 3. Alloy-based Anode Material

  • 3.1. Overview of Alloy-based Anode Material
  • 3.2. Properties of Alloy-based Anode Material
  • 3.3. Problems and Solutions of Alloy-based Anode Material
    • 3.3.1. Representative Problems
    • 3.3.2. Metal Composite Anode Material
    • 3.3.3. Metal-Carbon Composite Anode Material
  • 3.4. SiOx-based Anode Material
    • 3.4.1. Structural Properties
    • 3.4.2. Electrochemical Properties
    • 3.4.3. Manufacturing Method
    • 3.4.4. Application of Prelithiation Process
  • 3.5. Research on Practical Application of Si-based Anode Material
    • 3.5.1. Difference of Electrochemical Behaviors
    • 3.5.2. Single Si Electrode and Si/Graphite Mixed Electrode
  • 3.6. Other Si-based Anode Materials
  • 3.6.1 3D Porous Si
    • 3.6.2. Si Nanotube
    • 3.6.3. Metal/Alloy Thin Film Anode Material

Chapter 4. Compound Anode Material

  • 4.1. Oxide-based Anode Material
  • 4.2. Nitride-based Anode Material
  • 4.3 2D Planar Structure Inorganic Compound (Mxenes)

Chapter 5. High Power Anode Material

  • 5.1. Overview of High Power Anode Material
  • 5.2. Intercalation Material
    • 5.2.1. Carbon Material
    • 5.2.2. LTO(Li4Ti5O12)
  • 5.3. Alloy-based Material
  • 5.4. Transition Material
  • 5.5. Nano-structured Micro Particles
    • 5.5.1. Nano-structured Micro Carbon Material
    • 5.5.2. Nano-structured Micro Li4Ti5O
    • 5.5.3. Nano-structured Micro Si-Carbon Composite Active Material
  • 5.6. Multi Channel Structure Graphite
  • 5.7. Si-Graphite Hybrid Material (SEAG)
  • 5.8. Graphene-SiO2 Material (Graphene Ball)
  • 5.9. Fast Charging from Anode Perspective
    • 5.9.1. Influence Factors of Anode Material
    • 5.9.2. Influence Factors of Electrode
    • 5.9.3. Fast Charging Technology Design of Major Battery Manufacturers
    • 5.9.4. Cases of Anode Technology Development for Fast Charging
  • 5.10. Conclusion and Outlook

Chapter 6. Li-metal Anode

  • 6.1. Overview of Li-metal Anode
  • 6.2. R&D Status of Li-metal Anode
    • 6.2.1. Artificial Surface Protection Layer (ASEI, formation of Artificial SEI layer)
    • 6.2.2. New Structure
    • 6.2.3. Hybrid Structure
    • 6.2.4. Electrolyte modification
  • 6.3. Problem and Outlook of Practical Application for Lithium Metal Anode
  • 6.4. Anode-Free LIB

Chapter 7. Anode's Effect on Safety

  • 7.1. Thermal Stability of Anode
  • 7.2. Safety During Fast Charging

Chapter 8. Global Supply Status and Outlook of Anode Material

  • 8.1. Anode Material Demand Outlook by Application ('21~'35)
  • 8.2. Anode Material Demand Outlook by Type ('21~'35)
  • 8.3. Anode Material Total Shipment(Supply) Volume by Supplier ('21~'24)
  • 8.4. Anode Material Total Shipment(Supply) M/S by Supplier ('21~'24)
    • SDI/LGC/SKI/Panasonic/CATL/ATL/BYD/Lishen/Guoxuan/AESC/CALB
  • 8.5. Shipment Volume of Natural Graphite(NG) Anode Material by Supplier ('21~24)
  • 8.6. Shipment M/S of NG Anode Material by Supplier ('21~24)
  • 8.7. Shipment Volume of Artificial Graphite(AG) Anode Material by Supplier ('21~24)
  • 8.8. Shipment M/S of AG Anode Material by Supplier ('21~24)
  • 8.9. Silicon Anode Material Shipment Volume & M/S by Supplier (In 2023)
  • 8.10. Comprehensive Analysis of Anode Material Supplier Status (In 2023)
  • 8.11. Anode Material Supplier NG Capa. Expansion Plan & Demand/Supply Outlook ('21~'30)
  • 8.12. Anode Material Supplier AG(SG) Capa. Expansion Plan & Demand/Supply Outlook ('21~'30)
  • 8.13. Anode Material Price Outlook by Type ('21~'30)
  • 8.14. Anode Material Market Size Outlook ('21~'30)

Chapter 9. Current Status and Outlook of Anode Material Demand by LIB Suppliers

  • 9.1. Anode Material's Overall Demand Performance, Outlook and Issues
  • 9.2. Current Status and Outlook of Anode Material Demand by Major LIB Suppliers
  • 9.3. Supply/Demand Status Among Major Companies

Chapter 10. Current Status of Graphite-Focused Anode Material Companies

  • 10.1. Global Top12
    • BTR/Shanshan/Zichen/Kaijin/Shangtai/Shinzoom/XFH/Kuntian/Dongdao/POSCO/Resonac/Mitsubishi
  • 10.2. Other Companies in China/Japan/Korea
    • Hitachi/Mitsubishi/Nippon Carbon/JFE/Tokai Carbon/Showa Denko/Shinetsu/Kureha
  • 10.3. Companies in US/Europe/Other Regions
    • Syrah/Westwater/Talga/NMG/Next source Mat./Mangnis/Renascor/Epsilon/Urbix/Novonix/Anovion

Chapter 11. Current Status of Silicon-Focused Anode Material Companies

  • 11.1. Si-Anode Companies in Japan, Korea
    • Shin-Etsu/JMC (Japan Metal & Chemicals)/Daejoo Electronic Materials/Posco Future M/Posco Silicon Solution (Former TERA TECHNOS)/SKMG14 (SK Materials-Group14)/SK Ultimus (Nexeon)/MK Electronics/Iljin Electric/EG/Hansol Chemical/Innox Advanced Materials (TRS)/FIC New Materials/LPN/Osaka Titanium/TCK(Tokai Carbon Korea)/Truewin (formerly NM Tech)/Korea Metal Silicon/EN Plus/Lotte Energy Materials (Enwires)/Dongjin Semichem/SJ Advanced Materials/IL Science/S Material/HNS Co., Ltd./Wipinetech/ Hana Materials/Grabsil/BSG Materials/Actro/Siri Energy
  • 11.2. Si-Anode Companies in China
    • IOPSILION, Tianmu/Chengdu Guibao/iAmetal, Beijing Yijin/Gotion/Shinghwa/Kingi/JereH/Huawei/Haoxin Tech /Guiyuan/Yuling New Energy/Zhejiang Lichen /Lanxi Zhide
  • 11.3. Si-Anode Companies in US, Europe and Other regions
    • Group14 (US)/Nexeon (UK)/Sila Nano (US)/Amprius (US)/Enovix (US)/Elkem (Nor)/Enevate (US)/Neo Battery (Canada)/OneD (US)/Nanograf (US)/StoreDot (Israel)/Targray (Canada)/Global Graphene Group (US)/EO Cell (US)/ADVANO (US) /Nanospan (US)/LeydenJar (Nether.)/Trion Battery (Canada)/Cenate (Norway)/SiCONA (AU)/Alkegen (US)/pH Matter LLC (US)/Paraclete Energy (US)/Himadri Specialty Chem (India)/E-Magy (Nether)/Ionblox (US)/Nanomakers (Fra.)/SiLi-ion (US)/Ionic Mineral Tech (US)/Ionobell (US)/The Coretec group (US)/Enwires (Fra.)/FARADPOWER (US)/SilLion (US)/Talga (AU)/SGL Carbon SE (Ger)

Chapter 12. References