锂离子电池隔离膜技术趋势及市场展望(~2035年)
市场调查报告书
商品编码
1648931

锂离子电池隔离膜技术趋势及市场展望(~2035年)

<2025> Technology Trends and Market Outlook of LIB Separators (~2035)

出版日期: | 出版商: SNE Research | 英文 350 Pages | 商品交期: 请询问到货日

价格
简介目录

锂离子电池在电动车(EV)、储能系统(ESS)和消费性电子产品(CE)等各个领域发挥重要作用。因此,持续提升能量密度、寿命和安全性非常重要。为了满足这些需求,隔膜作为决定电池性能和稳定性的关键零件而备受关注。隔膜能够促进电解液中的离子传输,同时防止正负极之间的物理接触,避免内部短路。虽然隔膜被归类为惰性成分,但其热性能、机械性能和电化学性能会显着影响电池的稳定性、寿命和安全性。

如今,隔膜技术正透过各种材料和製程的开发不断进步。传统的聚烯烃基隔膜(PE、PP)因其优异的机械稳定性和耐热性而广泛应用。然而,其在高功率和高温条件下的性能受到限制。为了应对这些挑战,陶瓷涂层技术和基于不织布的隔膜已被引进,显着提高了热稳定性和耐久性。此外,固态电池等下一代电池的出现需要设计出突破传统限制的新型复合隔膜。特别是,采用PVDF(聚偏氟乙烯)和其他先进聚合物材料的隔膜因其优异的热稳定性和电化学性能而受到积极研究,这些性能符合下一代电池的要求。

随着隔板技术的进步,锂离子电池市场呈现快速成长态势。预计到2030年,全球隔膜市场规模将从2025年的约22亿美元增加至128亿美元,年复合成长率超过12%。电动车的普及和对储能系统(ESS)需求的不断成长是推动这一成长的主要动力。尤其是对高性能电池的需求,成为隔膜技术创新的催化剂。同时,各大厂商正加速隔板的研发,以配合固态电池等下一代电池技术。

本报告对全球锂离子电池隔膜市场进行了研究分析,深入了解了锂离子电池行业的现状和未来发展趋势,包括2021年至2024年的历史需求资料、2025年至2030年的市场预测,以及各大隔膜厂商的最新产品趋势和技术战略。

目录

第1章 隔膜技术现况及发展趋势

  • 引言
  • 隔膜的种类
  • 隔膜的特性
  • 隔膜的主要问题

第2章 聚烯烃基隔膜

  • 聚烯烃基隔膜的製造过程
  • 聚烯烃基隔膜与电池的关係
  • 聚烯烃基隔膜的最新发展趋势

第3章 不织布隔膜

  • 不织布隔膜的製程
  • 不织布隔膜的特点
  • 不织布隔膜的最新发展趋势

第4章 耐热涂层隔膜的最新技术趋势

  • 多层耐热隔膜
  • 不织布隔膜
  • 含无机高安全性隔膜
  • 耐热聚合物涂层隔膜
  • 微孔聚合物隔膜
  • 热关断隔膜
  • 电压敏感隔膜

第5章 其他隔膜的最新技术趋势

  • 陶瓷复合隔膜
  • 自然启发锂离子电池隔膜
  • 氧化还原活性锂离子电池隔膜
  • 具关闭功能的锂离子电池隔离膜

第6章 Domestic LIB隔膜产业的最新技术趋势与发展

  • 案例研究 1:SKIET 湿式隔膜片技术
  • 案例研究 2:W-Scope 湿式隔膜技术
  • 案例研究 3:EnerEver 隔膜涂层技术
  • 案例研究 4:Upexchem 干式隔膜技术
  • 最新科技趋势概述

第7章 隔膜市场趋势与展望

  • 隔膜需求现状
  • 市场占有率与出货量趋势:依隔膜供应商
  • 隔膜采购量趋势:依主要LIB製造商
  • 隔膜产能展望
  • 隔膜需求展望
  • 隔膜供需展望
  • 隔膜价格趋势
  • 隔膜市场规模展望

第8章 隔膜製造商现况

  • 韩国隔膜製造商
    • SKIET(SK IE Technology)
    • W-Scope(WCP,W-Scope Corporation)
    • EnerEver
  • 日本隔膜製造商
    • Asahi Kasei
    • Toray
    • Ube Maxell
    • Sumitomo Chemical
    • Teijin
  • 中国隔膜製造商
    • SEMCORP
    • Senior
    • Sinoma
    • Gellec
    • ZIMT
    • Huiqiang
    • Putailai
    • Horizon
    • Bosser
    • Lanketu
    • CZMZ
    • Jinhui
    • Green
  • 其他分离器製造商
    • Sepion Technology

第9章 隔膜原料厂商现况

  • 韩国隔膜原料製造商
    • KC
    • Osang Jaiel
  • 中国隔膜原料製造商
    • Estone
    • CHALCO
    • Sinocera
    • Tianma
    • Higiant
  • 其他隔膜原料生产厂家
    • TOR Minerals
    • Nabaltec

第10章 参考文献

简介目录
Product Code: 247

Lithium-ion batteries play a crucial role in various sectors, including electric vehicles (EV), energy storage systems (ESS), and consumer electronics (CE). Consequently, continuous improvements in energy density, lifespan, and safety are essential. In meeting these demands, separators are gaining attention as a critical component that determines battery performance and stability. Separators allow ion transport through the electrolyte while preventing physical contact between the cathode and anode, thereby avoiding internal short circuits. Although classified as an inactive component, the thermal, mechanical, and electrochemical properties of separators significantly influence the cell's stability, lifespan, and safety.

Today, separator technology is advancing through the development of various materials and processes. Conventional polyolefin-based separators (PE, PP) are widely commercialized due to their excellent mechanical stability and thermal resistance. However, they exhibit performance limitations under high-power and high-temperature conditions. To address these challenges, ceramic coating technologies and nonwoven-based separators have been introduced, significantly improving thermal stability and durability. Additionally, the emergence of next-generation batteries, such as solid-state batteries, necessitates the design of new composite separators that surpass the limitations of conventional ones. In particular, separators utilizing PVDF (polyvinylidene fluoride) and other advanced polymer materials are being actively researched for their superior thermal stability and electrochemical performance, aligning with the requirements of next-generation batteries.

With the technological advancements in separators, the LIB market is experiencing rapid growth. According to SNE Research, the global separator market is projected to grow from approximately $2.2 billion in 2025 to $12.8 billion by 2030, achieving a CAGR of over 12%. This growth is primarily driven by the expansion of electric vehicle adoption and the increasing demand for energy storage systems (ESS). In particular, the demand for high-performance batteries is acting as a catalyst for innovations in separator technology. Simultaneously, major manufacturers are accelerating the development of separators tailored to next-generation battery technologies, such as solid-state batteries.

The 2025 report provides a comprehensive analysis of LIB separator technologies and the market. It delves into the development trends and performance enhancement strategies for key materials such as PE, PP, and PVDF. Additionally, it offers an in-depth examination of the evolution of ceramic coating and composite separator technologies, which have recently garnered significant attention. The report includes historical demand data from 2021 to 2024 based on global market data and presents market forecasts from 2025 to 2030. It also highlights the latest product trends and technological strategies of major separator manufacturers, offering valuable insights into the present and future of the LIB industry.

Separators have emerged as a critical component that determines the performance and safety of lithium-ion batteries (LIBs), going beyond being a mere part. This report provides technical insights and market forecasts for researchers and industry professionals, serving as an essential guide for comprehensively understanding the present and future of LIB separators. As the LIB industry continues to evolve, the significance of separator technology will grow even further in achieving environmental sustainability and the goals of a circular economy.

Strong Points of This Report:

  • 1. Comprehensive overview and technical details of separators
  • 2. Latest technological development trends in separators
  • 3. Market forecast data for separators
  • 4. Detailed information on manufacturing and product status of major separator companies

Table of Contents

1. Current Status and Development Trends of Separator Technology

  • 1.1. Introduction
    • 1.1.1. Current Status of Separator Development
    • 1.1.2. Role of Separator
  • 1.2. Types of Separator
    • 1.2.1. Microporous Polyolefin Separator
    • 1.2.2. Nonwoven Fabric
    • 1.2.3. Ceramic Composite Separator
  • 1.3. Separator Characteristics
    • 1.3.1. Chemical Stability
    • 1.3.2. Thickness
    • 1.3.3. Porosity
    • 1.3.4. Pore Size
    • 1.3.5. Torsional Rigidity
    • 1.3.6. Air Permeability
    • 1.3.7. Lithium-ion Permeability
    • 1.3.8. Mechanical Strength
    • 1.3.9. Wettability
    • 1.3.10. Electrolyte Absorption
    • 1.3.11. Thermal Shrinkage
    • 1.3.12. Shutdown Characteristics
    • 1.3.13. Cost
    • 1.3.14. Oxidation Stability
    • 1.3.15. Melt-down
  • 1.4. Major Issues of Separator
    • 1.4.1. Separator Properties
    • 1.4.2. Swelling and Softening of Separator
    • 1.4.3. Separator Damage by Lithium Dendrite
    • 1.4.4. Thermal Damage
    • 1.4.5. Mechanical Damage

2. Polyolefin-Based Separator

  • 2.1. Polyolefin-Based Separator Manufacturing Process
    • 2.1.1. Dry Method
    • 2.1.2. Wet Method
  • 2.2. Relationship Between Polyolefin-Based Separator and Battery
    • 2.2.1. Battery Performance
    • 2.2.2. Battery Safety
  • 2.3. Latest Development Trends of Polyolefin-Based Separator
    • 2.3.1. Surface Treatment
    • 2.3.2. Polymer-Functionalized Polyolefin Separator
    • 2.3.3. Ceramic-Coated/Deposited Polyolefin Separator
    • 2.3.4. Ceramic/Polymer-Functionalized Hybrid Polyolefin Separator

3. Nonwoven Fabric Separator

  • 3.1. Nonwoven Fabric Separator Manufacturing Process
    • 3.1.1. Dry-laid Method
    • 3.1.2. Wet-laid Method
    • 3.1.3. Spun-bond
    • 3.1.4. Melt-blown Process
    • 3.1.5. Web Bonding
  • 3.2. Properties of Nonwoven Fabric Separator
  • 3.3. Latest Development Trends of Nonwoven Fabric Separator
    • 3.3.1. Cellulose-Based Separator
    • 3.3.2. Fluoropolymer-Containing Separator
    • 3.3.3. PVA Separator
    • 3.3.4. PAN Separator
    • 3.3.5. PET Separator
    • 3.3.6. PI Separator
    • 3.3.7. PEI Separator
    • 3.3.8. Nylon Separator
    • 3.3.9. PEEK Separator
    • 3.3.10. PMMA Separator
    • 3.3.11. PBI Separator
    • 3.3.12. Poly(Para-Phenylene Benzobisoxazole) Separator
    • 3.3.13. Poly(m-Phenylene Isophthalamide) (PMIA) Separator
    • 3.3.14. Polyphenylene Sulfide Separator
    • 3.3.15. Polyphenylene Oxide Separator
    • 3.3.16. Polysulfone Separator

4. Latest Technological Trends in Heat-Resistant Coated Separators

  • 4.1. Multilayer Structure Heat-Resistant Separator
  • 4.2. Nonwoven Fabric Separator
  • 4.3. Inorganic-Introduced High-Safety Separator
    • 4.3.1. Non-Aqueous Inorganic Coated Separator
    • 4.3.2. Aqueous Inorganic Coated Separator
    • 4.3.3. Binder-Free Separator
    • 4.3.4. Multifunctional Inorganic Coated Separator
  • 4.4. Heat-Resistant Polymer Coated Separator
    • 4.4.1. Coated Separator with Heat-Resistant Polymer and Inorganic Materials
      • 4.4.1.1. Inorganic Coated Separator Using Heat-Resistant Polymer as a Binder
      • 4.4.1.2. Inorganic/Heat-Resistant Polymer Coated Separator
    • 4.4.2. Flame-Retardant Separator
      • 4.4.2.1. Separator Made with Flame-Retardant Materials
      • 4.4.2.2. Separator with Additional Flame-Retardant Materials
  • 4.5. Microporous Polymer Separator
  • 4.6. Thermal Shutdown Separator
  • 4.7. Voltage-Sensitive Separator

5. Latest Technological Trends in Other Separators

  • 5.1. Ceramic Composite Separator
  • 5.2. Nature-Inspired LIB Separator
  • 5.3. Redox-Active LIB Separator
  • 5.4. Shutdown-Functionalized LIB Separator

6. Latest Technological Trends and Developments in the Domestic LIB Separator Industry

  • 6.1. Case Study 1: SKIET Wet Separator Sheet Technology
    • 6.1.1. Overview of Separator Sheet Line Process
    • 6.1.2. Basic Required Properties of Separator Sheet
    • 6.1.3. Overview of Separator Coating Process
    • 6.1.4. Basic Required Properties of Coated Separator
  • 6.2. Case Study 2: W-Scope Wet Separator Technology
    • 6.2.1. Current Status of Wet Separator Development
    • 6.2.2. Development Direction of Wet Separator
  • 6.3. Case Study 3: EnerEver Separator Coating Technology
    • 6.3.1. Overview of Separator Coating Technology Development
    • 6.3.2. Prospects for Separator Coating Technology Development
  • 6.4. Case Study 4: Upexchem Dry Separator Technology
    • 6.4.1. Overview of Separator Technology Development
  • 6.5. Summary of Latest Technological Trends
    • 6.5.1. Enhanced Heat Resistance and Safety
    • 6.5.2. Ultra-Thin Separators
    • 6.5.3. Use of Advanced Materials
    • 6.5.4. Innovations in Manufacturing Process
    • 6.5.5. Additional Factors in Technology Development

7. Separator Market Trends and Outlook

  • 7.1. Current Status of Separator Demand
    • 7.1.1. Regional Separator Demand Status
    • 7.1.2. Material-Based Separator Demand Status
    • 7.1.3. Application-Based Separator Demand Status
  • 7.2. Market Share and Shipment Trends by Separator Suppliers
    • 7.2.1. Market Share Trends by Separator Suppliers
    • 7.2.2. Shipment Trends by Separator Suppliers
  • 7.3. Trends in Separator Purchasing Volume by Major LIB Manufacturers
    • 7.3.1. Samsung SDI (2020~2024E)
    • 7.3.2. LGES (2020~2024E)
    • 7.3.3. SK on (2020~2024E)
    • 7.3.4. Panasonic (2020~2024E)
    • 7.3.5. CATL (2020~2024E)
    • 7.3.6. BYD (2020~2024E)
    • 7.3.7. CALB (2020~2024E)
    • 7.3.8. EVE (2020~2024E)
    • 7.3.9. Gotion (2020~2024E)
  • 7.4. Separator Production Capacity Outlook
    • 7.4.1. Production Capacity Outlook by Type
    • 7.4.2. Production Capacity Outlook by Company
  • 7.5. Separator Demand Outlook
    • 7.5.1. Separator Demand Outlook by Region
    • 7.5.2. Separator Demand Outlook by Application
    • 7.5.3. Separator Demand Outlook by Type
  • 7.6. Separator Supply and Demand Outlook
    • 7.6.1. Global Separator Supply and Demand Outlook
    • 7.6.2. Separator Supply and Demand Outlook Excluding China's Capacity
  • 7.7. Separator Price Trends
    • 7.7.1. Separator Price Structure
    • 7.7.2. Separator Price Trends
  • 7.8. Separator Market Size Outlook

8. Status of Separator Manufacturers

  • 8.1. Korean Separator Manufacturers
    • 8.1.1. SKIET (SK IE Technology)
    • 8.1.2. W-Scope (WCP, W-Scope Corporation)
    • 8.1.3. EnerEver
  • 8.2. Japanese Separator Manufacturers
    • 8.2.1. Asahi Kasei
    • 8.2.2. Toray
    • 8.2.3. Ube Maxell
    • 8.2.4. Sumitomo Chemical
    • 8.2.5. Teijin
  • 8.3. Chinese Separator Manufacturers
    • 8.3.1. SEMCORP
    • 8.3.2. Senior
    • 8.3.3. Sinoma
    • 8.3.4. Gellec
    • 8.3.5. ZIMT
    • 8.3.6. Huiqiang
    • 8.3.7. Putailai
    • 8.3.8. Horizon
    • 8.3.9. Bosser
    • 8.3.10. Lanketu
    • 8.3.11. CZMZ
    • 8.3.12. Jinhui
    • 8.3.13. Green
  • 8.4. Other Separator Manufacturers
    • 8.4.1. Sepion Technology

9. Status of Separator Raw Material Manufacturers

  • 9.1. Korean Separator Raw Material Manufacturers
    • 9.1.1. KC
    • 9.1.2. Osang Jaiel
  • 9.2. Chinese Separator Raw Material Manufacturers
    • 9.2.1. Estone
    • 9.2.2. CHALCO
    • 9.2.3. Sinocera
    • 9.2.4. Tianma
    • 9.2.5. Higiant
  • 9.3. Other Separator Raw Material Manufacturers
    • 9.3.1. TOR Minerals
    • 9.3.2. Nabaltec

10. References