硅光子市场- 2018-2028 年全球产业规模、份额、趋势、机会和预测,按组件、按应用、波导、产品、材料、地区和竞争细分
市场调查报告书
商品编码
1370863

硅光子市场- 2018-2028 年全球产业规模、份额、趋势、机会和预测,按组件、按应用、波导、产品、材料、地区和竞争细分

Silicon Photonics Market- Global Industry Size, Share, Trends, Opportunities, and Forecast, 2018-2028 Segmented By Component, By Application, By Waveguide, By Product, By Material, By Region and Competition

出版日期: | 出版商: TechSci Research | 英文 183 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

由于5G产业的快速发展,加上云端服务需求的激增,硅光子市场预计将在预测期内成长,这为在硅光子市场提供产品的公司提供了大量机会。多年来,主要参与者对硅光子技术表现出了兴趣。英特尔公司、思科系统公司、IBM公司和瞻博网路公司等公司都进行了大量投资,以巩固其在不断成长的硅光子市场的主导地位。然而,即使有如此巨大的成长,硅光子市场也面临许多挑战,包括采用不同通讯系统的问题、热效应的风险以及电信领域商业化的缺乏。

全球硅光子市场:驱动因素与趋势

市场概况
预测期 2024-2028
2022 年市场规模 13.4亿美元
2028 年市场规模 60.9亿美元
2023-2028 年复合年增长率 28.79%
成长最快的细分市场 汽车
最大的市场 北美洲

5G 通讯需求不断成长:

硅光子技术可望彻底改变电信业。到目前为止,资料都是透过铜线以电信号的形式传输的。然而,诸如 5G 通讯等技术的出现,可以实现更快的资料速度,以及铜允许的最大吞吐量,可能会成为计算速度的瓶颈。因此,在硅光子学中,更多图案化的硅将用于传输携带数据的雷射讯号,并有可能允许更多资料更快地移动,同时消耗更少的功率。此外,硅光子学可以轻鬆地以与目前硅基技术相同的质量规模製造。此外,英特尔公司等公司正在强化其 100G 硅光子收发器产品组合,以用于 5G 和物联网应用。

硅光子技术因其频宽、电磁场抗扰性、与光纤的兼容性和灵活性等有利特性而主要用于光通讯系统和网路。透过互补金属氧化物半导体(CMOS)相容製程製造光子装置为低成本和减少电路占用面积铺平了一条新途径,使光学技术可用于众多网路区段和新应用。 5G将4G基频单元(BBU)、射频拉远单元(RRU)和天线重建为集中单元(CU)。另一方面,分散式单元(DU)和主动天线单元(AAU)确保网路将包含前传、中传和回传。这些变化增加了对光收发器的需求,以满足与 5G 网路架构中关键链路相关的高频宽和距离要求。

智慧型手机和其他连网装置数量的不断增加增加了资料流量,因为这些设备在给定时间点透过网路传输大量资料,进一步创造了终端消费者对 5G 的需求。根据领先网路解决方案供应商 Telefonaktiebolaget LM Ericsson 的预测,到 2023 年底,全球每月行动资料流量预计将超过 100 ExaBytes (EB)。此外,医疗保健、消费性电子产品和行动装置对高速网路解决方案的需求汽车产业为5G 服务提供者创造了巨大的机会。因此,对5G基础设施的需求不断增长将对硅光子市场的成长产生正面影响。

透过硅光子学进行高速资料传输:

电信业已采用光纤技术作为改进的解决方案,以满足透过铜线传输更高速度和大容量资料的不断增长的需求。目前,大量资料透过长距离光纤传输和接收,这导致需要更换高耗电的电气交换机,这些交换机需要光电转换并导致讯号遗失。这导致了光子开关的出现,以提高传输质量并将单个传输连结到数十甚至数千个伺服器。

此外,硅基光子开关采用先进的CMOS技术,因其低成本和高容量而作为强大的平台而受到研究人员的巨大吸引力。此外,传统铜缆由于资料传输能力缓慢,阻碍了资料中心的发展和高效能运算 (HPC)。此外,它被认为不足以满足 HPC 应用程式、资料中心或有效管理不断增长的资料量的需求。另一方面,在硅光子学的情况下,资料透过光线在电脑晶片之间传输,与电导体相比,它可以在更短的时间内传输大量资料。随着硅光子技术的不断进步,预计能够以经济高效的方式实现 1 tbps 的资料传输速度。

英特尔公司、IBM公司和思科系统公司等公司认为硅光子学是一项有前景的技术,可以重塑资料中心系统交换资料的方式并创建更精简的机架设备。因此,这些公司正在投资技术。 IBM公司投资了硅奈米光子技术,该技术使用光而不是电讯号来传输资料,使得大量资料能够透过光脉衝在伺服器、大型资料中心和超级电脑的电脑晶片之间快速传输。随着硅光子晶片的集成,由于讯号强度很强,远距离传输大块资料(> 100 GB)变得更加容易。目前,硅光子技术在北美、欧洲等地区已广泛应用。此外,随着资料中心等应用程式对更高频宽的需求增加,该产业将转向垂直整合以推动製造流程。此外,预计未来几年光电子产品开发的研究活动将会增加。

资料中心的部署不断增加:资料中心在资讯的摄取、运算、储存和管理方面发挥着至关重要的作用。然而,许多资料中心笨重、低效且过时。因此,为了保持它们的运行,资料中心营运商正在对其进行升级以适应不断变化的世界。此外,思科系统公司声称,到 2021 年,资料中心内的流量将增加三倍,其中很大一部分份额归因于超大规模设施,例如由谷歌、亚马逊、Facebook、苹果和微软等领先企业开发的设施。由于其架构,超大规模资料中心几乎可以扩展到任何所需的规模。这些中心需要高速连接来在其基本构建块(例如各个伺服器及其支援设备)之间移动一次性资料。

资料中心最先进的传输速率大多为 100 Gb/s。然而,业界目前的目标是部署 400 Gb/s 左右的速度。预计该速度未来还会增加。增长速度意味着硅光子解决方案将能够轻鬆深入通讯结构。此外,PIC 的最大需求量是资料和电信网路中的资料中心互连 (DCI),以及 5G 无线技术、汽车或医疗感测器等新应用的出现。磷化铟(InP)是最常用的,但硅光子学的成长速度较快。硅光子技术正在应用于各种资料中心的系统到系统连接。预计该技术还将在伺服器内晶片的各个部分之间移动。

全球硅光子市场:挑战

复杂的设计平台与製造流程:

硅光子学在高频宽光通讯领域迅速成熟,应用于资料通讯、存取网路和频宽密集型电子产品的 I/O 领域,以及光谱学和感测领域的新兴应用。为了从光子学中获得最佳性能,需要整合光子学和电子学,例如并排、堆迭或在同一晶片上。然而,光子学和电子学的结合可能会在设计方面产生一系列新问题,例如复杂光子和电子电路的协同设计和联合模拟、可以处理光子电路的验证演算法以及对可变性的容忍度。

系统级应用的製造流程、设计平台和特定装置设计仍存在重大挑战。硅光子学的基本价值主张是,与目前最先进的微电子晶片相比,它可以利用使用较低解析度 CMOS 处理的成熟製造製程。然而,现有的高品质电子装置製造技术不一定能够大批量地实现高品质光学元件。硅光子元件中 CMOS 与光子学的单晶片整合强烈依赖于特定製造製程的设计规则,导致装置目前必须经过后处理才能实现高产量。

硅光子装置的封装问题:

封装在硅光子元件的系统级实现中发挥重要作用。硅光子装置要上市,就需要经济高效、坚固耐用的封装。为了使硅光子成为一个可行的平台,需要实现封装的自动化。封装中的重要问题是大容量光学连接、热稳定性以及电子元件的正确封装。大多数商业硅光子元件都是收发器。光栅耦合器通常提供光学连接,因为与边缘耦合相比,它们对未对准不太敏感。然而,光栅耦合器具有波长选择性,这使得它们难以用于大光谱频宽解决方案。

热稳定性也是硅光子元件封装中的重要问题。其中一些设备利用热引起的较大折射率变化。装置的封装必须确保外部温度波动不会改变装置的运作。此外,导致这种过量热产生的硅光子学的物理特性是双光子吸收,这是一个电子-电洞对在一对光子的帮助下被激发的过程。然而,这个过程会产生不必要的热量和光。由于产生热量,硅光子技术被认为是一种不环保的技术,因为热污染会显着提高周围温度。因此,采用热电冷却器 (TEC) 的封装变得越来越普遍。然而,这些组件增加了设备的整体功耗和成本。

市场部门

全球硅光子市场分为组件、应用、波导、产品、材料和区域。根据组件,市场分为雷射、调变器、PIC、光电探测器、超低损耗波导。根据应用,市场分为资料中心、电信、消费性电子、医疗保健、汽车等。根据波导,市场分为400-1,500 NM、1,310-1,550 NM、900-7000 NM。根据产品,市场分为收发器、可变光衰减器、交换器、电缆、感测器。依材料,市场分为硅或硅基合金、磷化铟等。依地区划分,市场分为北美、亚太地区、欧洲、南美、中东和非洲。

市场参与者

全球硅光子市场的主要市场参与者包括英特尔公司、Luxtera Inc.(思科系统公司的子公司)、Acacia Communications, Inc.、Infinera Corporation、IBM Corporation、Finisar Corporation、STMicroElectronics NV、Fujitsu Ltd.、OneChip Photonics Inc .和NeoPhotonics Corporation

报告范围:

在本报告中,全球硅光子市场除了详细介绍的产业趋势外,还分为以下几类:

硅光子市场,依组成部分:

  • 雷射器
  • 数据机
  • PIC
  • 光电探测器
  • 超低损耗波导

硅光子市场,按应用:

  • 资料中心
  • 电信
  • 消费性电子产品
  • 卫生保健
  • 汽车
  • 其他的

硅光子市场,作者:Waveguide:

  • 400-1,500 海里
  • 1,310-1,550 海里
  • 900-7000 海里

硅光子市场,副产品:

  • 收发器
  • 可变光衰减器
  • 开关
  • 电缆
  • 感应器

硅光子市场,依材料:

  • 硅或硅基合金
  • 磷化铟
  • 其他的

硅光子市场,按地区:

  • 北美洲
  • 美国
  • 加拿大
  • 墨西哥
  • 欧洲
  • 德国
  • 义大利
  • 西班牙
  • 英国
  • 法国
  • 亚太地区
  • 中国
  • 印度
  • 日本
  • 新加坡
  • 韩国
  • 中东和非洲
  • 南非
  • 沙乌地阿拉伯
  • 阿联酋
  • 南美洲
  • 巴西
  • 阿根廷
  • 哥伦比亚

竞争格局

  • 公司简介:全球硅光子市场主要公司详细分析。

可用的客製化:

  • 根据给定的市场资料,全球硅光子市场,Tech Sci Research 可根据公司的具体需求提供客製化服务。该报告可以使用以下自订选项:

公司资讯

  • 其他市场参与者(最多五个)的详细分析和概况分析。

目录

第 1 章:产品概述

  • 市场定义
  • 研究范围

第 2 章:研究方法

  • 基线方法
  • 计算市场规模所遵循的方法
  • 计算市场占有率所遵循的方法
  • 预测遵循的方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球硅光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件(雷射、调製器、PIC、光电探测器、超低损耗波导)
    • 按应用(资料中心、电信、消费性电子产品、医疗保健、汽车、其他)
    • 透过波导(400-1,500 NM、1,310-1,550 NM、900-7000 NM)
    • 按产品(收发器、可变光衰减器、开关、电缆、感测器)
    • 依材料(硅或硅基合金、磷化铟、其他)
    • 按地区(北美、亚太地区、欧洲、中东和非洲以及南美洲)
  • 按公司划分 (2022)
  • 市场地图

第 6 章:北美硅光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按应用
    • 透过波导
    • 按产品分类
    • 按材质
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 7 章:欧洲硅光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按应用
    • 透过波导
    • 按产品分类
    • 按材质
    • 按国家/地区
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第 8 章:亚太硅光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按应用
    • 透过波导
    • 按产品分类
    • 按材质
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 新加坡

第 9 章:南美洲硅光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按应用
    • 透过波导
    • 按产品分类
    • 按材质
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲硅光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按组件
    • 按应用
    • 透过波导
    • 按产品分类
    • 按材质
    • 按国家/地区
  • 中东和非洲:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

第13章:竞争格局

  • 竞争展望
  • 公司简介
    • Intel Corporation
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • Luxtera Inc. (Subsidiary of Cisco Systems, Inc.)
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • Acacia Communications, Inc.
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • Infinera Corporation
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • IBM Corporation
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • Finisar Corporation
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • STMicroelectronics NV
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • Fujitsu Ltd.
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • OneChip Photonics Inc.
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布
    • NeoPhotonics Corporation
      • 商业概览
      • 主要人员
      • 最近的发展
      • 金融
      • 地理分布

第 14 章:策略建议

第 15 章:关于我们与免责声明

(註:公司名单可依客户要求客製化)

简介目录
Product Code: 4454

Silicon photonics market is expected to grow during the forecast period due to the rapid developments in the 5G industry, combined with the surge in demand for cloud-based services, which provide a plethora of opportunities to companies that offer products in the silicon photonics market. Over the years, major players have shown interest in the silicon photonics technology. Intel Corporation, Cisco Systems, Inc., IBM Corporation, and Juniper Networks, Inc., among other players, have invested heavily to assert their dominance in the growing silicon photonics market. However, even with such enormous growth, the silicon photonics market is facing many challenges, including problems in adopting different communication systems, risk of thermal effects, and lack of commercialization in the telecommunication sector.

The emerging technology that transmits data inside computer chips via optical beams is called silicon photonics. There is a significant opportunity in the future since silicon photonics. Due to this, can transfer more data while using less power and without any signal loss.

Global Silicon Photonics Market: Drivers & Trends

Market Overview
Forecast Period2024-2028
Market Size 2022USD 1.34 Billion
Market Size 2028USD 6.09 Billion
CAGR 2023-202828.79%
Fastest Growing SegmentAutomotive
Largest MarketNorth America

Increasing Demand for 5G Communication:

Silicon photonics technology is expected to change the telecommunication industry completely. Until now, data was transmitted in the form of electrical signals through copper wiring. However, the emergence of technologies, such as 5G communication that enables faster data speeds, and the maximum throughput that copper allows for can potentially act as a bottleneck on computing speeds. Hence, with silicon photonics, more patterned silicon will be used to transmit data-carrying laser signals and carry the potential to allow more data to be moved around faster while also consuming less power. Moreover, silicon photonics can be easily manufactured at the same mass scale as current silicon-based technologies. Moreover, companies such as, Intel Corporation are intensifying their portfolio of 100G silicon photonics transceivers to be used for 5G and IoT applications.

Silicon photonic technologies are primarily used in optical communication systems and networks due to their favoring features such as bandwidth, immunity to electromagnetic fields, and compatibility with optical fiber and flexibility. The fabrication of photonic devices through complementary metal-oxide semiconductor (CMOS) compatible processes has paved a new path for low cost and reduced footprint circuits, making optical technologies available for numerous network segments and new applications. 5G rebuilds the 4G baseband unit (BBU), radio remote unit (RRU) and antenna into the centralized unit (CU). On the other hand, the distributed unit (DU) and active antenna unit (AAU) ensure that the network will incorporate fronthaul, midhaul, and backhaul. These changes have increased the demands for optical transceivers to meet the high bandwidth and distance requirements associated with critical links in the 5G network architecture.

The rising number of smart phones and other connected devices has increased the data traffic, as these devices transfer large amount data across a network at a given point of time, further creating the demand for 5G from end consumers. As per Telefonaktiebolaget LM Ericsson, a leading network solution provider, the monthly global mobile data traffic is expected to exceed 100 ExaBytes (EB) by the end of 2023. Furthermore, the need for high-speed network solutions from healthcare, consumer electronics, and automotive sectors has created an immense opportunity for 5G service providers. Hence, the increasing demand for 5G infrastructure is going to positively impact the growth of silicon photonics market.

High Speed Data Transmission Through Silicon Photonics:

The telecom industry has embraced fiber-optic technology as an improved solution to meet the surging demand for higher speeds and large-capacity data transmission over the electrical copper wires. At present, a huge amount of data is transmitted and received over long-haul fibers, which has led to the replacement of high power-consuming electrical switches that require optical-electrical-optical conversions and cause signal loss. This has led to the emergence of photonic switches to improve transmission quality and link a single transmission to tens and sometimes thousands of servers.

Moreover, silicon-based photonic switches use advanced CMOS technology to garner huge attraction from researchers as a powerful platform because of their low cost and high capacity. Moreover, traditional copper cabling is stifling datacenter evolution and high-performance computing (HPC) because of its slow data transfer capacity. Moreover, it is deemed inadequate for HPC applications, data centers, or efficiently managing growing data volumes. On the other hand, in the case of silicon photonics, data is transmitted among computer chips by optical rays, which can transmit large amounts of data in shorter time than electrical conductors. With the increasing advancements in silicon photonics technology, it is anticipated that it can realize data transfer speed at 1 tbps in a cost-effective manner.

Companies such as Intel Corporation, IBM Corporation, and Cisco Systems, Inc. consider silicon photonics as a promising technology that can reshape how datacenter systems exchange data and create leaner rack equipment. Therefore, these companies are investing in technology. IBM Corporation has invested in its silicon nano-photonics technology, which uses light instead of electrical signals to transfer data, enabling huge volumes of data to be transferred swiftly between computer chips in servers, large data centers, and supercomputers via pulses of light. With the integration of silicon photonics chips, it has become easier to transfer large chunks of data (>100 GB) from long distances because of the strong signal strength. Currently, silicon photonics technology is used extensively in regions such as North America and Europe. Furthermore, as the demand for higher bandwidth increases in applications such as data centers, the industry would be shifting toward vertical integration to drive the manufacturing process. In addition, it is expected that optoelectronics product development is going to witness an increased number of research activities in the coming years.

Rising Deployment of Data Centers: Data centers have witnessed a crucial role in the ingestion, computation, storage, and management of information. However, many data centers are clunky, inefficient, and outdated. Hence, to keep them running, data center operators are upgrading them to fit the ever-changing world. Additionally, in 2021, Cisco Systems, Inc. claimed that traffic within data centers will increase three times, with a high amount of share attributed in hyperscale facilities such as those developed by leading players including Google, Amazon, Facebook, Apple, and Microsoft. Hyperscale data centers can be expanded to virtually any desirable size due to their architecture. These centers require high-speed connections to move lump-sum data between their basic building blocks, such as the individual servers and their supporting equipment.

The state-of-the-art transmission rates in data centers are mostly of 100 Gb/s. However, the industry is currently aiming to deploy a speed of around 400 Gb/s. This speed is also anticipated to increase going forward. The growing speed signifies the fact that silicon photonics solutions would be able to proceed deeper into the communications structure easily. Moreover, the largest volume demand for PICs is for data center interconnects (or DCIs) in data and telecom networks, with new applications coming, such as 5G wireless technology, automotive or medical sensors. Indium phosphide (InP) is the most used, but silicon photonics is growing at a faster rate. Silicon photonics technology is being adopted in system-to-system connections in various data centers. The technology is further expected to move between the sections on the chips within the servers as well.

Global Silicon Photonics Market: Challenges

Complex Design Platforms and Fabrication Processes:

Silicon photonics is rapidly gaining maturity in high bandwidth optical communication, with applications in datacom, access networks, and I/O for bandwidth-intensive electronics along with emerging applications in spectroscopy and sensing. The integration of photonics and electronics is needed to get the most optimum performance out of the photonics, such as side-by-side, stacked, or on the same chip. However, the combination of photonics and electronics can create a range of new problems on the design side, such as codesign and co-simulation of complex photonic and electronic circuits, verification algorithms that can handle photonic circuits, and tolerance to variability.

There are still major challenges in the fabrication processes, design platforms, and specific device design for system-level applications. The fundamental value proposition of silicon photonics is that it can leverage mature fabrication processes using lower resolution CMOS processing compared to current state-of-the-art microelectronic chips. However, the existing fabrication techniques for high-quality electronic devices do not necessarily realize high-quality optical devices in large volumes. Monolithic integration of CMOS with photonics in silicon photonic devices is strongly dependent on the design rules of the specific fabrication processes, leading to devices that currently must be post-processed to achieve high yield.

Packaging Issues with Silicon Photonics Devices:

Packaging plays a significant role in system-level implementations of silicon photonics devices. Cost-effective, robust packaging is required for silicon photonic devices to be marketable. For silicon photonics to be a viable platform, there is a requirement for the automation of packaging. Significant problems in packaging are high-volume optical connections, thermal stability, and proper packaging of electronic components. Most commercial silicon photonics devices are transceivers. Grating couplers typically provide optical connections, as they are less sensitive to misalignment, as compared to edge-coupling. However, grating couplers are wavelength-selective, making their use for large spectral-bandwidth solutions difficult.

Thermal stability is also a significant issue in the packaging of silicon photonic devices. Some of these devices use large thermally induced changes in the refractive index. The devices must be packaged such that external temperature fluctuations do not alter the operation of the device. Moreover, the physical properties of silicon photonics, which lead to this excess thermal generation, is two-photon absorption, a process in which an electron-hole pair is excited with the help of a pair of photons. This process, however, generates unwanted heat and light. Due to thermal heat generation, silicon photonics technology is considered a non-ecofriendly technology, as thermal pollution increases the surrounding temperature significantly. Therefore, packaging with thermal electric coolers (TEC) is becoming more common. However, these components add to the overall power and cost of the device.

Market Segments

The global silicon photonics market is segmented into component, application, waveguide, product, material, and region. Based on component, the market is segmented into lasers, modulators, PICs, photodetectors, ultra-low-loss waveguides. Based on application, the market is segmented into data centers, telecommunication, consumer electronics, healthcare, automotive, and others. Based on waveguide, the market is segmented into 400-1,500 NM, 1,310-1,550 NM, 900-7000 NM. Based on product, the market is segmented into transceivers, variable optical attenuators, switches, cables, sensors. Based on material, the market is segmented into silicon or silicon-based alloys, indium phosphide, and others. Based on region, the market is segmented into North America, Asia-Pacific, Europe, South America, and Middle East & Africa.

Market Players

Major market players in the global silicon photonics market are Intel Corporation, Luxtera Inc. (Subsidiary of Cisco Systems, Inc.), Acacia Communications, Inc., Infinera Corporation, IBM Corporation, Finisar Corporation, STMicroelectronics N.V., Fujitsu Ltd., OneChip Photonics Inc., and NeoPhotonics Corporation

Report Scope:

In this report, global silicon photonics market has been segmented into following categories, in addition to the industry trends which have also been detailed below:

Silicon Photonics Market, By Component:

  • Lasers
  • Modulators
  • PICs
  • Photodetectors
  • Ultra-low-loss Waveguides

Silicon Photonics Market, By Application:

  • Data Center
  • Telecommunication
  • Consumer Electronics
  • Healthcare
  • Automotive
  • Others

Silicon Photonics Market, By Waveguide:

  • 400-1,500 NM
  • 1,310-1,550 NM
  • 900-7000 NM

Silicon Photonics Market, By Product:

  • Transceivers
  • Variable Optical Attenuators
  • Switches
  • Cables
  • Sensors

Silicon Photonics Market, By Material:

  • Silicon or Silicon Based Alloys
  • Indium Phosphide
  • Others

Silicon Photonics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • Germany
  • Italy
  • Spain
  • United Kingdom
  • France
  • Asia pacific
  • China
  • India
  • Japan
  • Singapore
  • South Korea
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • South America
  • Brazil
  • Argentina
  • Colombia

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in global silicon photonics market.

Available Customizations:

  • Global silicon photonics market with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Study

2. Research Methodology

  • 2.1. Baseline Methodology
  • 2.2. Methodology Followed for Calculation of Market Size
  • 2.3. Methodology Followed for Calculation of Market Shares
  • 2.4. Methodology Followed for Forecasting

3. Executive Summary

4. Voice of Customer

5. Global Silicon Photonics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Lasers, Modulators, PICs, Photodetectors, Ultra-low-loss Waveguides)
    • 5.2.2. By Application (Data Center, Telecommunication, Consumer Electronics, Healthcare, Automotive, Others)
    • 5.2.3. By Waveguide (400-1,500 NM, 1,310-1,550 NM, 900-7000 NM)
    • 5.2.4. By Product (Transceivers, Variable Optical Attenuators, Switches, Cables, Sensors)
    • 5.2.5. By Material (Silicon or Silicon Based Alloys, Indium Phosphide, Others)
    • 5.2.6. By Region (North America, Asia-Pacific, Europe, Middle East & Africa, and South America)
  • 5.3. By Company (2022)
  • 5.4. Market Map

6. North America Silicon Photonics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Application
    • 6.2.3. By Waveguide
    • 6.2.4. By Product
    • 6.2.5. By Material
    • 6.2.6. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Silicon Photonics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By Waveguide
        • 6.3.1.2.4. By Product
        • 6.3.1.2.5. By Material
    • 6.3.2. Canada Silicon Photonics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By Waveguide
        • 6.3.2.2.4. By Product
        • 6.3.2.2.5. By Material
    • 6.3.3. Mexico Silicon Photonics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By Waveguide
        • 6.3.3.2.4. By Product
        • 6.3.3.2.5. By Material

7. Europe Silicon Photonics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Application
    • 7.2.3. By Waveguide
    • 7.2.4. By Product
    • 7.2.5. By Material
    • 7.2.6. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Silicon Photonics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By Waveguide
        • 7.3.1.2.4. By Product
        • 7.3.1.2.5. By Material
    • 7.3.2. Germany Silicon Photonics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By Waveguide
        • 7.3.2.2.4. By Product
        • 7.3.2.2.5. By Material
    • 7.3.3. United Kingdom Silicon Photonics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By Waveguide
        • 7.3.3.2.4. By Product
        • 7.3.3.2.5. By Material
    • 7.3.4. Italy Silicon Photonics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By Waveguide
        • 7.3.4.2.4. By Product
        • 7.3.4.2.5. By Material
    • 7.3.5. Spain Silicon Photonics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By Waveguide
        • 7.3.5.2.4. By Product
        • 7.3.5.2.5. By Material

8. Asia-Pacific Silicon Photonics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Application
    • 8.2.3. By Waveguide
    • 8.2.4. By Product
    • 8.2.5. By Material
    • 8.2.6. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Silicon Photonics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By Waveguide
        • 8.3.1.2.4. By Product
        • 8.3.1.2.5. By Material
    • 8.3.2. India Silicon Photonics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By Waveguide
        • 8.3.2.2.4. By Product
        • 8.3.2.2.5. By Material
    • 8.3.3. Japan Silicon Photonics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By Waveguide
        • 8.3.3.2.4. By Product
        • 8.3.3.2.5. By Material
    • 8.3.4. South Korea Silicon Photonics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By Waveguide
        • 8.3.4.2.4. By Product
        • 8.3.4.2.5. By Material
    • 8.3.5. Singapore Silicon Photonics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By Waveguide
        • 8.3.5.2.4. By Product
        • 8.3.5.2.5. By Material

9. South America Silicon Photonics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Application
    • 9.2.3. By Waveguide
    • 9.2.4. By Product
    • 9.2.5. By Material
    • 9.2.6. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Silicon Photonics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By Waveguide
        • 9.3.1.2.4. By Product
        • 9.3.1.2.5. By Material
    • 9.3.2. Argentina Silicon Photonics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By Waveguide
        • 9.3.2.2.4. By Product
        • 9.3.2.2.5. By Material
    • 9.3.3. Colombia Silicon Photonics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By Waveguide
        • 9.3.3.2.4. By Product
        • 9.3.3.2.5. By Material

10. Middle East & Africa Silicon Photonics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Application
    • 10.2.3. By Waveguide
    • 10.2.4. By Product
    • 10.2.5. By Material
    • 10.2.6. By Country
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. South Africa Silicon Photonics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By Waveguide
        • 10.3.1.2.4. By Product
        • 10.3.1.2.5. By Material
    • 10.3.2. Saudi Arabia Silicon Photonics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By Waveguide
        • 10.3.2.2.4. By Product
        • 10.3.2.2.5. By Material
    • 10.3.3. UAE Silicon Photonics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By Waveguide
        • 10.3.3.2.4. By Product
        • 10.3.3.2.5. By Material

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends and Developments

13. Competitive Landscape

  • 13.1. Competition Outlook
  • 13.2. Company Profiles
    • 13.2.1. Intel Corporation
      • 13.2.1.1. Business Overview
      • 13.2.1.2. Key Personnel
      • 13.2.1.3. Recent Developments
      • 13.2.1.4. Financials
      • 13.2.1.5. Geographical Presence
    • 13.2.2. Luxtera Inc. (Subsidiary of Cisco Systems, Inc.)
      • 13.2.2.1. Business Overview
      • 13.2.2.2. Key Personnel
      • 13.2.2.3. Recent Developments
      • 13.2.2.4. Financials
      • 13.2.2.5. Geographical Presence
    • 13.2.3. Acacia Communications, Inc.
      • 13.2.3.1. Business Overview
      • 13.2.3.2. Key Personnel
      • 13.2.3.3. Recent Developments
      • 13.2.3.4. Financials
      • 13.2.3.5. Geographical Presence
    • 13.2.4. Infinera Corporation
      • 13.2.4.1. Business Overview
      • 13.2.4.2. Key Personnel
      • 13.2.4.3. Recent Developments
      • 13.2.4.4. Financials
      • 13.2.4.5. Geographical Presence
    • 13.2.5. IBM Corporation
      • 13.2.5.1. Business Overview
      • 13.2.5.2. Key Personnel
      • 13.2.5.3. Recent Developments
      • 13.2.5.4. Financials
      • 13.2.5.5. Geographical Presence
    • 13.2.6. Finisar Corporation
      • 13.2.6.1. Business Overview
      • 13.2.6.2. Key Personnel
      • 13.2.6.3. Recent Developments
      • 13.2.6.4. Financials
      • 13.2.6.5. Geographical Presence
    • 13.2.7. STMicroelectronics N.V.
      • 13.2.7.1. Business Overview
      • 13.2.7.2. Key Personnel
      • 13.2.7.3. Recent Developments
      • 13.2.7.4. Financials
      • 13.2.7.5. Geographical Presence
    • 13.2.8. Fujitsu Ltd.
      • 13.2.8.1. Business Overview
      • 13.2.8.2. Key Personnel
      • 13.2.8.3. Recent Developments
      • 13.2.8.4. Financials
      • 13.2.8.5. Geographical Presence
    • 13.2.9. OneChip Photonics Inc.
      • 13.2.9.1. Business Overview
      • 13.2.9.2. Key Personnel
      • 13.2.9.3. Recent Developments
      • 13.2.9.4. Financials
      • 13.2.9.5. Geographical Presence
    • 13.2.10. NeoPhotonics Corporation
      • 13.2.10.1. Business Overview
      • 13.2.10.2. Key Personnel
      • 13.2.10.3. Recent Developments
      • 13.2.10.4. Financials
      • 13.2.10.5. Geographical Presence

14. Strategic Recommendations

15. About Us & Disclaimer

(Note: The companies list can be customized based on the client requirements)