封面
市场调查报告书
商品编码
1372719

生物光子市场 - 2018-2028 年全球产业规模、份额、趋势、机会和预测,按技术、地区、竞争预测和机会细分,2018-2028 年

Biophotonics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, 2018-2028 Segmented By Technology, By Region, By Competition Forecast & Opportunities, 2018-2028F

出版日期: | 出版商: TechSci Research | 英文 170 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022年,全球生物光子学市场估值达到541.8亿美元,预计在预测期内将呈现显着增长,预计到2028年复合年增长率(CAGR)为11.38%。生物光子学代表了一个跨学科领域,融合生物学和光子学(即光的研究),以培育适合生物和医学应用的开创性技术。这些技术利用光和生物组织之间的相互作用来促进广泛的成像、感测和诊断解决方案。

主要市场驱动因素

对非侵入性技术的需求不断增长

市场概况
预测期 2024-2028
2022 年市场规模 541.8亿美元
2028 年市场规模 1033亿美元
2023-2028 年复合年增长率 11.38%
成长最快的细分市场 内部影像
最大的市场 北美洲

在医学科学突飞猛进的时代,寻求侵入性较小、对病人更友善的医疗保健程序从未如此重要。全球生物光子市场处于这种范式转变的最前沿,利用对非侵入性技术不断增长的需求。非侵入性手术无需手术切口,减少患者的疼痛和不适。这在诊断影像中尤其重要,因为传统方法通常需要侵入性探查手术。非侵入性技术通常会缩短恢復期,使患者能够更快地恢復日常生活。这不仅提高了病患满意度,也减轻了医疗资源的负担。透过避免手术切口以及伤口相关感染和併发症的可能性,非侵入性技术为患者和医疗保健提供者提供了更安全的选择。不涉及外科手术的手术几乎不会留下疤痕,有助于改善美观和患者信心。 OCT 是一种非侵入性成像技术,利用光波捕捉生物组织的高解析度影像。它无需侵入性手术即可提供眼睛、血管和皮肤的详细图像,彻底改变了眼科、心臟病学和皮肤科。生物光子学促进了基于雷射的成像技术的发展,该技术可以以令人难以置信的精度检查组织和细胞。这些技术,例如多光子显微镜和共焦雷射扫描显微镜,有助于非侵入性诊断和研究。生物光子学为光动力疗法铺平了道路,这是一种针对癌症和其他医疗状况的非侵入性治疗选择。 PDT 涉及活化光敏药物来靶向并破坏异常细胞,同时保护健康组织。生物光子学使得微创外科手术成为可能,利用雷射以更小的切口进行手术。这种方法减少了患者的创伤,降低了併发症的风险,并加快了復原时间。

成像技术的进步

在不断发展的医疗保健和生命科学领域,影像技术已成为创新的重要催化剂。在这个领域中,生物光子学将生物学原理与光子学结合,成为进步的灯塔。全球生物光子市场蓬勃发展的关键驱动力是成像技术的不断进步。高解析度成像技术的发展使研究人员能够以前所未有的细节可视化细胞和亚细胞结构。这对于理解疾病机制和开发精确的治疗方法有深远的影响。现代成像技术超越了静态图片。它们可以捕捉生物体内的动态过程,从而深入了解生物系统如何即时运作。这对于研究血流、神经活动和细胞迁移等过程至关重要。多重成像的进步使得单一样品中的多个生物标记或分子能够同时可视化。这可以对复杂的生物系统和疾病进行全面评估。非侵入性影像技术的发展减少了对侵入性手术的需求,并提高了病患的舒适度和安全性。非侵入性方法在诊断和监测疾病方面特别有价值。即时成像技术,例如活细胞显微镜,改变了我们研究动态生物过程的能力。研究人员现在可以观察发生的细胞事件,为癌症和神经退化性疾病等疾病提供有价值的见解。 OCT 是一种非侵入性影像技术,在眼科和心臟病学领域取得了显着成长。它可以对组织层和血管进行高解析度成像,有助于疾病的早期检测和管理。这种先进的成像技术能够在细胞层面上实现深层组织的可视化。它在神经科学、癌症研究和再生医学领域都有应用,促进了突破性的发现。生物光子学扩展了萤光成像的能力,允许追踪细胞内的特定分子。这对于研究细胞过程和开发标靶疗法非常有价值。基于雷射的生物光子学为微创外科手术铺平了道路。这些技术使用雷射精确瞄准和治疗组织,减少了传统开放性手术的需要。

精准医疗与个人化医疗

在医学科学快速发展的时代,精准医疗和个人化医疗已成为诊断和治疗的变革性方法。这些创新范例为全球医疗保健领域做出了重大贡献,反过来又推动了全球生物光子市场的成长。精准医学涉及分析患者的基因组成,以根据其遗传和分子特征量身定制医疗治疗方案。这些资讯有助于识别与疾病相关的基因突变或生物标记。个人化医疗保健考虑患者的遗传、环境和生活方式因素来制定个人化治疗计划。这种方法允许医疗保健提供者选择更可能有效且副作用更少的疗法。透过分析遗传和分子资料,精准医学可以在早期阶段(通常在症状出现之前)发现疾病。这种早期发现可以带来更成功的治疗。个人化医疗保健可以持续监测患者对治疗的反应。可以即时进行调整,优化结果并最大限度地减少不利影响。生物光子技术有助于发现和验证生物标记。这些生物标记对于识别疾病风险、预测治疗反应和监测疾病进展至关重要。生物光子学技术,例如萤光成像和多光子显微镜,可以对活体有机体内的分子过程进行深入可视化。这有助于研究人员了解疾病机制并评估治疗效果。生物光子学在标靶治疗的发展中发挥关键作用。这些疗法旨在精确靶向和治疗异常细胞,保护健康组织并减少副作用。生物光子学提供非侵入性诊断工具,例如光学相干断层扫描 (OCT),无需侵入性手术即可检测早期疾病。生物光子学提供的即时成像功能可以连续监测治疗反应。这使得医疗保健提供者可以根据每位患者的需求调整治疗计划。

研究与开发投资

在快速发展的医疗保健和生命科学领域,全球生物光子市场已成为创新的灯塔,为疾病的诊断、治疗和理解提供了一条充满希望​​的途径。推动其成长的关键因素是对研发(R&D)的大量投资。研发投资是各产业进步的基石,医疗保健和生命科学也不例外。在生物光子学的背景下,这些投资带来了利用光与生物组织之间相互作用的技术的突破性进步。研发工作推动创新生物光子技术的发展。这些技术对于解决从早期疾病检测到个人化治疗等复杂的医疗保健挑战至关重要。大量的研发资金推动了先进成像技术的诞生,例如光学相干断层扫描 (OCT)、萤光成像和多光子显微镜。这些技术提供生物组织的高解析度即时成像,这对于诊断和研究至关重要。研发投资对于开发标靶疗法至关重要,这些疗法利用生物光子技术精确靶向和治疗特定细胞或组织,最大限度地减少对健康组织的附带损害。生物标记对于早期疾病检测和治疗监测至关重要。研发投资支持新生物标记的发现和验证,这些生物标记通常使用生物光子学方法进行检测和分析。研发资金促成了晶片实验室设备的创建,该设备整合了生物光子学,用于快速和便携式诊断应用。这些设备在护理点环境和资源有限的环境中具有巨大潜力。

主要市场挑战

开发成本高

生物光子技术需要在研究、开发和製造方面进行大量投资。开发尖端成像系统、光谱工具和雷射技术的相关成本可能非常高。这对小公司和研究机构构成了进入壁垒,限制了市场参与者的多样性。

监管障碍

全球生物光子市场在高度监管的环境中运作,特别是在医疗保健应用领域。获得监管部门的批准,例如美国的 FDA 许可或欧洲的 CE 标誌,可能是一个漫长且昂贵的过程。这可能会延迟新生物光子产品和技术的市场进入。

熟练的劳动力

生物光子学需要拥有生物学和光子学专业知识的高技能劳动力。招募和留住此类人才可能具有挑战性。此外,来自不同领域的研究人员和专业人士之间需要跨学科合作,这有时会受到沟通障碍的阻碍。

市场竞争

全球生物光子市场的竞争日益激烈,老牌企业和新进者都在争夺市场份额。这种竞争会压低价格和利润率,使公司保持创新和获利能力面临挑战。

主要市场趋势

小型化、便携化

小型化是生物光子学市场的流行词。随着技术的进步,生物光子设备变得更加紧凑和便携。手持成像系统、护理点诊断工具和晶片实验室设备正在兴起。这些进步使生物光子学能够到达偏远和资源有限的地区,改变医疗保健的可及性。

人工智慧 (AI) 集成

人工智慧正在彻底改变生物光子学中的资料分析和解释。机器学习演算法可以快速处理生物光子技术产生的大量资料,有助于影像分析、诊断和治疗最佳化。人工智慧驱动的生物光子学有望提高医疗保健的精度和效率。

先进的光谱技术

光谱学是生物光子学的基石,新的先进技术正在不断涌现。拉曼光谱、高光谱成像和太赫兹光谱越来越受到重视。这些技术为分子结构、生物标记和组织成分提供了宝贵的见解,从而实现更准确的疾病诊断和监测。

神经病学中的生物光子学

生物光子学正在神经科学领域取得重大进展。功能性近红外光光谱 (fNIRS) 和多光子显微镜等技术正在增强我们对大脑功能的理解。它们是研究神经退化性疾病、脑损伤和精神疾病的宝贵工具。

细分市场洞察

技术洞察

在生物光子市场的技术领域,预计在预计的时间内,最大的市场份额将属于内部成像,特别是内视镜检查。内视镜检查是一种用于目视检查身体内部区域的医疗程序。此手术使用称为内视镜的专用仪器来检查体内中空器官或空腔的内部。与许多其他医学影像方法不同,内视镜直接插入被检查的器官。

区域洞察

目前,北美在生物光子市场占据主导地位,预计将在未来几年保持领先地位。尤其是美国,在生物光子产业中扮演着举足轻重的角色。此外,奈米技术的出现极大地推动了美国生物光子学市场的发展。

2020 年 11 月,业纳光与光学生物光子学集团在北美获得了多个新的开发合约。第一份合约涉及用于机器人手术器械的先进光纤医疗设备的摄影系统的设计。第二个开发计划涉及为一家着名的眼科护理公司的眼科手术系统设计各种子组件。对于第三个项目,业纳正在与全球主要的医学实验室设备供应商合作,提供用于即时细胞分析的先进自动化显微镜。第四项努力代表了与一家专门从事即时 (POC) 血清学检测的医疗诊断公司持久合作关係的延伸。

科技的重大进步提升了光学技术在解决医学和生命科学相关挑战中的作用。光学技术在各个领域都有应用,包括患者的临床治疗和分子层面的研究。美国致力于探索生物光子学和其他光学技术进步的会议数量激增。值得注意的是,光学学会组织了 OSA 生物光子学大会,会议讨论了光学仪器、生命科学成像、分子探针开发等领域取得的进展。此外,美国国会已从20120财政年度预算中拨款,用于探索生物光子学在基因治疗研究、免疫治疗研究、阿兹海默症研究和各种其他项目中的机会。这些资金也专门用于促进美国医疗技术製造的扩张。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
    • 涵盖的市场
    • 考虑学习的年份
    • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

  • 市场概况
  • 主要市场细分概述
  • 主要市场参与者概述
  • 重点地区/国家概况
  • 市场驱动因素、挑战、趋势概述

第 4 章:客户之声

第 5 章:全球生物光子学市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术(表面成像、内部成像、透视成像、显微镜、生物感测器、医用雷射、光谱分子、其他)
    • 按地区
    • 按公司划分 (2022)
  • 产品市场地图
    • 依技术
    • 按地区

第 6 章:北美生物光子学市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术(表面成像、内部成像、透视成像、显微镜、生物感测器、医用雷射、光谱分子、其他)
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 7 章:欧洲生物光子市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术(表面成像、内部成像、透视成像、显微镜、生物感测器、医用雷射、光谱分子、其他)
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙

第 8 章:亚太地区生物光子学市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术(表面成像、内部成像、透视成像、显微镜、生物感测器、医用雷射、光谱分子、其他)
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 日本
    • 印度
    • 澳洲
    • 韩国

第 9 章:南美洲生物光子学市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术(表面成像、内部成像、透视成像、显微镜、生物感测器、医用雷射、光谱分子、其他)
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲生物光子学市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依技术(表面成像、内部成像、透视成像、显微镜、生物感测器、医用雷射、光谱分子、其他)
    • 按国家/地区
  • MEA:国家分析
    • 南非生物光子学
    • 沙乌地阿拉伯生物光子学
    • 阿联酋生物光子学
    • 科威特生物光子学

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 近期发展
  • 併购
  • 产品发布

第 13 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第14章:竞争格局

  • 商业概览
  • 产品供应
  • 最近的发展
  • 财务(据报导)
  • 主要人员
  • SWOT分析
    • Thermo Fisher Scientific Inc
    • Nu Skin Enterprises Inc
    • Becton Dickinson & Co
    • Glenbrook Technologies Inc
    • HAMAMATSU PHOTONICS KK
    • Olympus Corp
    • Carl Zeiss AG
    • Oxford Instruments PLC
    • ZENALUX BIOMEDICAL, INC.
    • PerkinElmer Health Sciences Inc

第 15 章:策略建议

第 16 章:关于我们与免责声明

简介目录
Product Code: 16105

In 2022, the Global Biophotonics Market reached a valuation of USD 54.18 billion, and it is expected to exhibit remarkable growth in the forecasted period, with an anticipated Compound Annual Growth Rate (CAGR) of 11.38% through 2028. Biophotonics represents an interdisciplinary domain that amalgamates biology and photonics, which is the study of light, to foster pioneering technologies catering to biological and medical applications. These technologies harness the interplay between light and biological tissues to facilitate a wide spectrum of imaging, sensing, and diagnostic solutions.

Key Market Drivers

Rising Demand for Non-Invasive Techniques

Market Overview
Forecast Period2024-2028
Market Size 2022USD 54.18 Billion
Market Size 2028USD 103.30 Billion
CAGR 2023-202811.38%
Fastest Growing SegmentInside Imaging
Largest MarketNorth America

In an era where medical science is making leaps and bounds, the quest for less invasive, more patient-friendly healthcare procedures has never been more critical. The global biophotonics market is at the forefront of this paradigm shift, capitalizing on the increasing demand for non-invasive techniques. Non-invasive procedures eliminate the need for surgical incisions, reducing pain and discomfort for patients. This is especially crucial in diagnostic imaging, where traditional methods often require invasive exploratory surgeries. Non-invasive techniques typically result in shorter recovery periods, allowing patients to return to their daily lives more swiftly. This not only enhances patient satisfaction but also reduces the burden on healthcare resources. By avoiding surgical incisions and the potential for wound-related infections and complications, non-invasive techniques offer a safer alternative for both patients and healthcare providers. Procedures that do not involve surgical cuts leave little to no scarring, contributing to improved aesthetics and patient confidence. OCT is a non-invasive imaging technique that utilizes light waves to capture high-resolution images of biological tissues. It has revolutionized ophthalmology, cardiology, and dermatology by providing detailed images of the eye, blood vessels, and skin without the need for invasive procedures. Biophotonics has led to the development of laser-based imaging techniques that can examine tissues and cells with incredible precision. These technologies, such as multiphoton microscopy and confocal laser scanning microscopy, are instrumental in non-invasive diagnostics and research. Biophotonics has paved the way for photodynamic therapy, a non-invasive treatment option for cancer and other medical conditions. PDT involves the activation of light-sensitive drugs to target and destroy abnormal cells while sparing healthy tissue. Biophotonics has enabled minimally invasive surgical procedures that utilize lasers to perform surgeries with smaller incisions. This approach reduces the trauma to patients, lowers the risk of complications, and accelerates recovery times.

Advancements in Imaging Technologies

In the ever-evolving landscape of healthcare and life sciences, imaging technologies have emerged as a vital catalyst for innovation. Within this realm, biophotonics, which combines the principles of biology with photonics, stands out as a beacon of progress. A key driving force behind the surging global biophotonics market is the continuous advancement of imaging technologies. The development of high-resolution imaging techniques has allowed researchers to visualize cellular and subcellular structures with unprecedented detail. This has profound implications for understanding disease mechanisms and developing precise treatments. Modern imaging technologies go beyond static pictures. They can capture dynamic processes within living organisms, providing insights into how biological systems function in real time. This is crucial for studying processes like blood flow, neural activity, and cell migration. Advances in multiplex imaging enable the simultaneous visualization of multiple biomarkers or molecules within a single sample. This allows for comprehensive assessments of complex biological systems and diseases. The development of non-invasive imaging techniques has reduced the need for invasive procedures, improving patient comfort and safety. Non-invasive methods are particularly valuable in diagnosing and monitoring diseases. Real-time imaging technologies, such as live-cell microscopy, have transformed our ability to study dynamic biological processes. Researchers can now observe cellular events as they happen, providing valuable insights into diseases like cancer and neurodegenerative disorders. OCT, a non-invasive imaging technique, has seen significant growth in ophthalmology and cardiology. It allows for high-resolution imaging of tissue layers and blood vessels, aiding in the early detection and management of diseases. This advanced imaging technique enables the visualization of deep tissues at the cellular level. It has applications in neuroscience, cancer research, and regenerative medicine, facilitating groundbreaking discoveries. Biophotonics has expanded the capabilities of fluorescence imaging, allowing for the tracking of specific molecules within cells. This is invaluable for studying cellular processes and developing targeted therapies. Laser-based biophotonics has paved the way for minimally invasive surgical procedures. These techniques use lasers to precisely target and treat tissues, reducing the need for traditional open surgeries.

Precision Medicine and Personalized Healthcare

In the age of rapidly advancing medical science, precision medicine and personalized healthcare have emerged as transformative approaches to diagnosis and treatment. These innovative paradigms are making significant contributions to the global healthcare landscape and, in turn, propelling the growth of the global biophotonics market. Precision medicine involves analyzing a patient's genetic makeup to tailor medical treatments specifically to their genetic and molecular characteristics. This information helps identify genetic mutations or biomarkers associated with diseases. Personalized healthcare considers a patient's genetic, environmental, and lifestyle factors to create a personalized treatment plan. This approach allows healthcare providers to choose therapies that are more likely to be effective and have fewer side effects. By analyzing genetic and molecular data, precision medicine can detect diseases at an earlier stage, often before symptoms manifest. This early detection can lead to more successful treatments. Personalized healthcare allows for continuous monitoring of a patient's response to treatment. Adjustments can be made in real time, optimizing outcomes and minimizing adverse effects. Biophotonics technologies are instrumental in discovering and validating biomarkers. These biomarkers are crucial for identifying disease risk, predicting treatment responses, and monitoring disease progression. Biophotonics techniques, such as fluorescence imaging and multiphoton microscopy, allow for in-depth visualization of molecular processes within living organisms. This helps researchers understand disease mechanisms and evaluate treatment efficacy. Biophotonics plays a pivotal role in the development of targeted therapies. These therapies are designed to precisely target and treat abnormal cells, sparing healthy tissue and reducing side effects. Biophotonics offers non-invasive diagnostic tools, such as optical coherence tomography (OCT), which can detect early-stage diseases without invasive procedures. Real-time imaging capabilities provided by biophotonics enable continuous monitoring of treatment responses. This allows healthcare providers to adjust treatment plans as needed for each patient.

Research and Development Investments

In the rapidly evolving landscape of healthcare and life sciences, the global biophotonics market has emerged as a beacon of innovation, offering a promising pathway for the diagnosis, treatment, and understanding of diseases. A pivotal factor fueling its growth is substantial investments in research and development (R&D). R&D investments are a cornerstone of progress in various industries, and healthcare and life sciences are no exception. In the context of biophotonics, these investments have led to groundbreaking advancements in technologies that leverage the interaction between light and biological tissues. R&D efforts drive the development of innovative biophotonics technologies. These technologies are critical for addressing complex healthcare challenges, from early disease detection to personalized treatment. Substantial R&D funding has enabled the creation of advanced imaging technologies, such as optical coherence tomography (OCT), fluorescence imaging, and multiphoton microscopy. These techniques provide high-resolution, real-time imaging of biological tissues, essential for diagnosis and research. R&D investments are crucial for the development of targeted therapies that utilize biophotonics techniques to precisely target and treat specific cells or tissues, minimizing collateral damage to healthy tissue. Biomarkers are vital for early disease detection and treatment monitoring. R&D investments support the discovery and validation of new biomarkers, which are often detected and analyzed using biophotonics methods. R&D funding has led to the creation of lab-on-a-chip devices that integrate biophotonics for rapid and portable diagnostic applications. These devices have significant potential in point-of-care settings and resource-constrained environments.

Key Market Challenges

High Development Costs

Biophotonics technologies require substantial investments in research, development, and manufacturing. The costs associated with developing cutting-edge imaging systems, spectroscopy tools, and laser technologies can be prohibitively high. This poses a barrier to entry for smaller companies and research institutions, limiting the diversity of market participants.

Regulatory Hurdles

The global biophotonics market operates in a highly regulated environment, especially in healthcare applications. Obtaining regulatory approvals, such as FDA clearance in the United States or CE marking in Europe, can be a lengthy and costly process. This can delay the market entry of new biophotonics products and technologies.

Skilled Workforce

Biophotonics requires a highly skilled workforce with expertise in both biology and photonics. Recruiting and retaining such talent can be challenging. Moreover, there is a need for interdisciplinary collaboration between researchers and professionals from different domains, which can sometimes be hindered by communication barriers.

Market Competition

The global biophotonics market is becoming increasingly competitive, with established players and new entrants vying for market share. This competition can drive down prices and profit margins, making it challenging for companies to sustain innovation and profitability.

Key Market Trends

Miniaturization and Portability

Miniaturization is a buzzword in the biophotonics market. As technology shrinks, biophotonics devices are becoming more compact and portable. Handheld imaging systems, point-of-care diagnostic tools, and lab-on-a-chip devices are on the rise. These advancements enable biophotonics to reach remote and resource-constrained areas, transforming healthcare accessibility.

Artificial Intelligence (AI) Integration

AI is revolutionizing data analysis and interpretation in biophotonics. Machine learning algorithms can rapidly process the vast amounts of data generated by biophotonics technologies, aiding in image analysis, diagnostics, and treatment optimization. AI-driven biophotonics promises to enhance precision and efficiency in healthcare.

Advanced Spectroscopy Techniques

Spectroscopy is a cornerstone of biophotonics, and new advanced techniques are emerging. Raman spectroscopy, hyperspectral imaging, and terahertz spectroscopy are gaining prominence. These techniques provide valuable insights into molecular structures, biomarkers, and tissue composition, enabling more accurate disease diagnosis and monitoring.

Biophotonics in Neurology

Biophotonics is making significant inroads into neuroscience. Technologies like functional near-infrared spectroscopy (fNIRS) and multiphoton microscopy are enhancing our understanding of brain function. They are valuable tools for studying neurodegenerative diseases, brain injuries, and psychiatric disorders.

Segmental Insights

Technology Insights

In the technology sector of the biophotonics market, it is anticipated that within the projected timeframe, the largest market share will belong to inside imaging, specifically endoscopy. Endoscopy is a medical procedure employed to visually inspect the internal regions of the body. This procedure utilizes a specialized instrument called an endoscope to examine the interior of hollow organs or cavities within the body. Unlike many other medical imaging methods, endoscopes are inserted directly into the organ being examined.

The integration of detection, characterization, diagnosis, and staging during endoscopic procedures remains an unmet medical requirement. The advent of biophotonics in the realm of endoscopy has unlocked fresh possibilities and presented significant and novel prospects for the improved identification and biochemical characterization of diseases. The most suitable and valuable approach for categorizing biophotonic endoscopic techniques is based on their capacity to furnish functional and biochemical data and enhance spatial resolution. Among the commonly utilized visualization technologies are second harmonic generation (SHG), frequency-domain angle-resolved low coherence interferometry (fa/LCI), and near-infrared (near-IR) technologies.

One of the most valuable applications of biophotonics in the field of medicine is photodynamic therapy. This therapeutic approach is employed for treating cancer, and it can also be utilized for conditions such as acne and psoriasis. Such applications of these technologies are driving the demand within the biophotonics market.

Regional Insights

Currently, North America holds a dominant position in the biophotonics market and is anticipated to maintain its leadership for several more years. The United States, in particular, plays a pivotal role in the biophotonics industry. Moreover, the emergence of nanotechnology has significantly propelled the biophotonics market within the United States.

In November 2020, Jenoptik Light and Optics Biophotonics Group secured multiple new development contracts in North America. The first contract pertains to the design of a camera system for an advanced fiber-optic medical device intended for use in a robotic surgical instrument. The second development initiative involves designing various subcomponents for an ophthalmology surgery system for a prominent eye care company. For the third project, Jenoptik is collaborating with a major global provider of medical laboratory equipment to deliver an advanced automated microscope for real-time cellular analysis. The fourth endeavor represents an extension of an enduring partnership with a medical diagnostics firm that specializes in point-of-care (POC) serology tests.

The significant strides in technology have elevated the role of optical techniques in addressing medical and life science-related challenges. Optical technology finds applications in various fields, encompassing the clinical treatment of patients and investigations conducted at the molecular level. The United States has seen a surge in the number of conferences dedicated to exploring advancements in biophotonics and other optical techniques. Notably, the Optical Society organized the OSA Biophotonics Congress, where discussions revolved around progress made in areas such as optical instrumentation, life science imaging, molecular probe development, and more. Additionally, the United States Congress has allocated funds from the FY20120 budget to explore opportunities for biophotonics in gene therapy research, immunotherapy research, Alzheimer's research, and various other projects. These funds are also earmarked to promote the expansion of medical technology manufacturing within the United States.

Key Market Players

  • Thermo Fisher Scientific Inc
  • Nu Skin Enterprises Inc
  • Becton Dickinson & Co
  • Glenbrook Technologies Inc
  • HAMAMATSU PHOTONICS K.K.
  • Olympus Corp
  • Carl Zeiss AG
  • Oxford Instruments PLC
  • ZENALUX BIOMEDICAL, INC.
  • PerkinElmer Health Sciences Inc

Report Scope:

In this report, the Global Biophotonics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Biophotonics Market, By Technology:

  • Surface Imaging
  • Inside Imaging
  • See-through Imaging
  • Microscopy
  • Biosensors
  • Medical Lasers
  • Spectromolecular
  • Others

Biophotonics Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • Germany
  • United Kingdom
  • France
  • Italy
  • Spain
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Biophotonics Market.

Available Customizations:

  • Global Biophotonics market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Biophotonics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 5.2.2. By Region
    • 5.2.3. By Company (2022)
  • 5.3. Product Market Map
    • 5.3.1. By Technology
    • 5.3.2. By Region

6. North America Biophotonics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 6.2.2. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Biophotonics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology
    • 6.3.2. Canada Biophotonics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology
    • 6.3.3. Mexico Biophotonics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology

7. Europe Biophotonics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 7.2.2. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Biophotonics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology
    • 7.3.2. United Kingdom Biophotonics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology
    • 7.3.3. France Biophotonics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology
    • 7.3.4. Italy Biophotonics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology
    • 7.3.5. Spain Biophotonics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology

8. Asia-Pacific Biophotonics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 8.2.2. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Biophotonics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology
    • 8.3.2. Japan Biophotonics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology
    • 8.3.3. India Biophotonics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology
    • 8.3.4. Australia Biophotonics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology
    • 8.3.5. South Korea Biophotonics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology

9. South America Biophotonics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 9.2.2. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Biophotonics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology
    • 9.3.2. Argentina Biophotonics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology
    • 9.3.3. Colombia Biophotonics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology

10. Middle East and Africa Biophotonics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology (Surface Imaging, Inside Imaging, See-through Imaging, Microscopy, Biosensors, Medical Lasers, Spectromolecular, Others)
    • 10.2.2. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Biophotonics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology
    • 10.3.2. Saudi Arabia Biophotonics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology
    • 10.3.3. UAE Biophotonics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology
    • 10.3.4. Kuwait Biophotonics Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Technology

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Recent Development
  • 12.2. Mergers & Acquisitions
  • 12.3. Product Launches

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Business Overview
  • 14.2. Product Offerings
  • 14.3. Recent Developments
  • 14.4. Financials (As Reported)
  • 14.5. Key Personnel
  • 14.6. SWOT Analysis
    • 14.6.1. Thermo Fisher Scientific Inc
    • 14.6.2. Nu Skin Enterprises Inc
    • 14.6.3. Becton Dickinson & Co
    • 14.6.4. Glenbrook Technologies Inc
    • 14.6.5. HAMAMATSU PHOTONICS K.K.
    • 14.6.6. Olympus Corp
    • 14.6.7. Carl Zeiss AG
    • 14.6.8. Oxford Instruments PLC
    • 14.6.9. ZENALUX BIOMEDICAL, INC.
    • 14.6.10. PerkinElmer Health Sciences Inc

15. Strategic Recommendations

16. About Us & Disclaimer