封面
市场调查报告书
商品编码
1406464

波浪能和潮汐能市场 - 2018-2028 年全球产业规模、份额、趋势、机会和预测(按类型、技术、地区按应用、竞争细分)。

Wave And Tidal Energy Market - Global Industry Size, Share, Trends, Opportunity, and Forecast Segmented By Type, By Technology, By Application By Region, By Competition 2018-2028.

出版日期: | 出版商: TechSci Research | 英文 183 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2022 年全球波浪和潮汐能市场价值为 5.2835 亿美元,预计到 2028 年预测期内将强劲增长,复合CAGR为 24.35%。波浪能被定义为海洋表面波浪的能量,它被捕获用于发电、海水淡化以及将水抽入水库。波浪能和潮汐能是最有前途的绿色技术,因为它们产生最集中的再生能源。海洋是取之不尽、用之不竭的清洁能源。因此,利用海洋表面的潮汐能和波浪能预计将成为最永续的能源。它们是利用海洋能源发电的可持续方法。世界各国倾向于利用这些形式的再生能源,因为它们提供了持续稳定的清洁能源来源。一些国家丰富的海洋表面和能源发电促使各国政府将海洋能发电作为未来再生能源的重要来源。此外,潮汐能透过类似风力的涡轮机发挥作用,叶片每分钟旋转 12 至 18 次,具体取决于潮汐强度。涡轮机连接到齿轮箱,齿轮箱带动发电机发电。此外,波浪发电是与潮汐能相关的发电类型。波浪能不是依赖大片水域的潮汐运动,而是来自风驱动的波浪。它可以用来发电。

主要市场驱动因素

再生能源转型

市场概况
预测期 2024-2028
2022 年市场规模 5.2835亿美元
2028 年市场规模 19.71 亿美元
2023-2028 年CAGR 24.35%
成长最快的细分市场 潮汐能
最大的市场 欧洲

全球波浪能和潮汐能市场的主要驱动力之一是全球向再生能源的过渡。对气候变迁、温室气体排放和化石燃料有限性的担忧促使政府、企业和消费者寻求更清洁的替代方案。波浪能和潮汐能被认为是这一转变的重要组成部分,因为它们提供了一致且可预测的可再生能源。

目录

第 1 章:产品概述

  • 市场定义
  • 市场范围
  • 涵盖的市场
  • 考虑学习的年份
  • 主要市场区隔

第 2 章:研究方法

  • 研究目的
  • 基线方法
  • 主要产业伙伴
  • 主要协会和二手资料来源
  • 预测方法
  • 数据三角测量与验证
  • 假设和限制

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球波浪能与潮汐能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型(波浪能、潮汐能)
    • 依技术分类(潮汐流发生器、振盪水柱、潮汐涡轮机、潮汐坝、潮汐围篱)
    • 按应用(发电、海水淡化)
    • 按地区
  • 按公司划分 (2022)
  • 市场地图

第 6 章:北美波浪能与潮汐能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按应用
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 7 章:亚太波浪能与潮汐能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按应用
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 印尼

第 8 章:欧洲波浪能与潮汐能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按应用
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 英国
    • 法国
    • 俄罗斯
    • 西班牙

第 9 章:南美洲波浪能与潮汐能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按应用
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷

第 10 章:中东和非洲波浪能和潮汐能市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 依技术
    • 按应用
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 南非
    • 阿联酋
    • 以色列
    • 埃及
  • 司机
  • 挑战

第 11 章:市场趋势与发展

第 12 章:公司简介

  • 安德瑞兹股份公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • 诺瓦创新有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • 轨道船舶动力有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • MAKO 涡轮机有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • SIMEC亚特兰提斯能源有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • 海德索斯公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • 永续海洋能源有限公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services
  • 洛克希德马丁公司
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel
    • Key Product/Services

第 13 章:策略建议

第 14 章:关于我们与免责声明

简介目录
Product Code: 19575

Global Wave And Tidal Energy Market was valued at USD 528.35 Million in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 24.35% through 2028. Wave energy is defined as the energy of the ocean surface waves, which is captured for electricity generation, desalination, and for pumping of water into reservoirs. Wave and tidal energies are the most promising green technologies, as they generate the most concentrated source of renewable energy. Oceans are an inexhaustible source of clean energy. Therefore, harnessing tidal and wave energy from the ocean surfaces is expected to be the most sustainable source of energy. They are the sustainable methods of harnessing energy of oceans for power generation. Countries across the world tend to utilize these forms of renewable energy, as these provide a constant and steady source of clean energy. Abundance of ocean surface and energy generation capacity in several nations has promoted governments to pursue ocean energy generation as an important source of their renewable energy in future. In addition, tidal energy works through a wind like turbine, with blades rotating 12-to-18 times a minute, depending on tide strength. The turbine is connected to a gearbox that turns a generator, creating electricity. Moreover, wave-driven power is a type of power generation related to tidal power. Rather than relying on the tidal movements in large bodies of water, wave energy is derived from wind-driven waves. It can be used to generate electricity.

Key Market Drivers

Renewable Energy Transition

Market Overview
Forecast Period2024-2028
Market Size 2022USD 528.35 Million
Market Size 2028USD 1971 Million
CAGR 2023-202824.35%
Fastest Growing SegmentTidal Energy
Largest MarketEurope

One of the primary drivers of the global wave and tidal energy market is the global transition towards renewable energy sources. Concerns about climate change, greenhouse gas emissions, and the finite nature of fossil fuels have prompted governments, businesses, and consumers to seek cleaner alternatives. Wave and tidal energy are considered a vital component of this transition, as they offer a consistent and predictable source of renewable power.

Abundant Marine Resources

The world's oceans offer an immense and largely untapped source of energy. The energy potential of ocean waves and tides is substantial, and many coastal regions around the world are well-suited for harnessing these resources. This abundance of marine resources makes wave and tidal energy an attractive option for countries looking to diversify their energy mix and reduce reliance on fossil fuels.

Energy Security and Independence

Wave and tidal energy contribute to energy security and independence. Countries with access to ocean resources can generate power locally, reducing their dependence on imported fossil fuels and enhancing their energy security. This is particularly important in regions vulnerable to energy supply disruptions. Wave and tidal energy are environmentally friendly sources of electricity generation. They produce no greenhouse gas emissions or air pollutants, which helps mitigate climate change and improve air quality. Furthermore, marine energy projects have a relatively small physical footprint and minimal impact on local ecosystems compared to some other renewable energy sources.

Predictable and Consistent Energy Source

Unlike some renewable energy sources like wind and solar, which can be intermittent, wave and tidal energy offer a consistent and predictable source of power. Ocean waves and tides follow well-defined patterns and can be accurately predicted, making it easier to integrate marine energy into the grid and meet energy demand reliably.

Reduction of Carbon Footprint

Governments and businesses worldwide are under increasing pressure to reduce their carbon footprints and achieve carbon neutrality. Wave and tidal energy contribute to these efforts by providing a clean, low-carbon energy source. As emissions reduction targets become more stringent, the demand for such renewable energy solutions is expected to grow.

Technological Advancements

Advancements in technology have significantly improved the efficiency and cost-effectiveness of wave and tidal energy systems. Innovations in materials, design, and engineering have led to the development of more reliable and efficient marine energy devices. These advancements have made it increasingly feasible to harness marine energy at competitive costs.

Research and Development Investments

Public and private sector investments in research and development (R&D) for wave and tidal energy have been substantial. Governments and organizations around the world have allocated funding to support R&D initiatives, aiming to accelerate the commercialization of marine energy technologies. These investments have led to breakthroughs in device design, performance optimization, and resource assessment.

Job Creation and Economic Growth

The wave and tidal energy sector have the potential to create jobs and stimulate economic growth, particularly in coastal regions. Building, operating, and maintaining marine energy projects require a skilled workforce, providing employment opportunities in areas that may have faced economic challenges in the past.

Energy Export Opportunities

Countries with significant wave and tidal energy resources can explore energy export opportunities. By generating surplus electricity from marine energy, they can export clean power to neighboring regions or countries, strengthening economic ties and benefiting from energy trade.

Energy Diversity

Diversifying the energy mix is a key strategy for ensuring energy resilience and stability. Wave and tidal energy complement other renewable sources like wind and solar, providing a diversified portfolio of renewable energy options that can meet varying energy demand patterns.

Supportive Policies and Incentives

Government policies and incentives play a crucial role in driving the adoption of wave and tidal energy. Many countries have introduced feed-in tariffs, tax incentives, and subsidies to promote the development of marine energy projects. Additionally, renewable energy targets and regulations that prioritize clean energy sources have created a favorable environment for wave and tidal energy investments.

Public Awareness and Acceptance

Growing public awareness and acceptance of renewable energy solutions have contributed to the development of the wave and tidal energy market. Concerns about environmental sustainability and the desire to transition away from fossil fuels have garnered public support for marine energy projects.

International Collaboration

International collaboration and knowledge-sharing have accelerated the growth of the global wave and tidal energy market. Research organizations, industry associations, and governments from different countries work together to share best practices, research findings, and technological innovations, facilitating the development and deployment of marine energy technologies.

In conclusion, the global wave and tidal energy market are driven by a combination of factors, including the worldwide shift towards renewable energy, abundant marine resources, energy security, environmental benefits, predictability, and advancements in technology. Additionally, research and development investments, job creation, economic growth, energy export opportunities, energy diversity, supportive policies, public awareness, and international collaboration all play pivotal roles in propelling the growth of this promising renewable energy sector. As the world continues to prioritize clean energy sources, wave and tidal energy are expected to play an increasingly significant role in meeting global energy needs while mitigating the impacts of climate change.

Key Market Challenges

High Initial Capital Costs

One of the most significant challenges facing the wave and tidal energy industry is the high initial capital costs associated with developing and deploying these technologies. Building and installing wave and tidal energy devices, such as wave energy converters (WECs) and tidal turbines, can be expensive. The cost of designing, testing, and manufacturing these specialized devices, as well as installing them in harsh marine environments, presents a significant financial barrier. In addition to high upfront costs, operational and maintenance expenses for wave and tidal energy systems can also be substantial. These systems operate in challenging offshore conditions, which require regular maintenance and monitoring to ensure their continued operation. Dealing with the corrosive effects of saltwater, fouling by marine organisms, and the need for specialized vessels and equipment for maintenance drives up ongoing costs.

Uncertainty in Energy Resource Assessment: Another challenge is the inherent uncertainty in assessing the energy potential of specific wave and tidal sites. Accurately predicting the availability and intensity of waves and tides at a particular location is complex and often requires extensive data collection and analysis. Variability in these resources can affect the reliability and predictability of energy generation.

Environmental and Regulatory Concerns: Wave and tidal energy projects can face environmental and regulatory challenges. Concerns about the impact of energy extraction on marine ecosystems, including potential effects on marine life and habitats, can lead to regulatory hurdles and public opposition. Ensuring that projects comply with environmental regulations and address stakeholder concerns is crucial but can be complex and time-consuming.

Grid Integration and Infrastructure: Connecting wave and tidal energy systems to the electrical grid is a logistical challenge. Many potential project sites are located in remote or offshore locations, requiring the development of appropriate grid infrastructure to transport electricity to consumers. Grid integration issues, including transmission losses, grid stability, and capacity planning, need to be addressed.

Technological Reliability and Durability: Ensuring the long-term reliability and durability of wave and tidal energy devices is a significant technical challenge. The harsh marine environment, including storms and corrosive seawater, can lead to wear and tear on equipment. Extensive research and development efforts are required to design and engineer robust devices that can withstand these conditions.

Competing Energy Sources: Wave and tidal energy must compete with other renewable and non-renewable energy sources in the market. The availability of cheaper and more established sources like wind and solar energy can make it challenging for wave and tidal energy to gain a competitive foothold, especially in regions with abundant wind or solar resources.

Lack of Standardization: The wave and tidal energy industry lacks standardization, which can lead to higher costs and slower development. Establishing industry-wide standards for device design, performance assessment, and grid integration could help streamline the development process and reduce costs.

Access to Funding and Investment: Securing funding and investment for wave and tidal energy projects can be challenging. Investors often perceive these technologies as high-risk due to their relatively early stage of development and the uncertainties associated with marine energy resource assessment.

In summary, while wave and tidal energy hold significant potential as clean and renewable energy sources, the high costs of technology development and deployment, along with challenges related to resource assessment, environmental concerns, grid integration, and competition from other energy sources, represent the primary challenges facing the global wave and tidal energy market. Addressing these challenges will be essential for the industry's growth and widespread adoption as a sustainable energy solution.

Key Market Trends

Technology Advancements

Technology advancements are poised to be a major catalyst in driving the growth of the global Wave And Tidal Energy market. As innovation continues to surge in the renewable energy sector, Wave And Tidal Energy is benefiting from cutting-edge developments that are making it more efficient, cost-effective, and environmentally friendly. One key advancement lies in the improvement of tidal turbine designs. Innovative turbine designs, such as horizontal-axis and vertical-axis turbines, are enhancing energy capture efficiency while reducing maintenance requirements. Additionally, the integration of advanced materials and coatings is increasing the durability and longevity of Wave And Tidal Energy infrastructure in harsh marine environments. Moreover, the integration of smart grid technologies and energy storage solutions is addressing the issue of intermittent tidal energy generation. This enables a more reliable and consistent power supply to the grid, enhancing its overall viability as a baseload energy source.

Furthermore, the use of predictive analytics and machine learning algorithms is optimizing tidal energy generation by accurately forecasting tidal patterns and optimizing turbine operation accordingly. Overall, these technology advancements are not only increasing the energy output of Wave And Tidal Energy systems but also lowering the levelized cost of energy, making Wave And Tidal Energy a more attractive option for governments and investors looking to expand their renewable energy portfolios. As technology continues to advance, the global Wave And Tidal Energy market is well-positioned to play a significant role in the transition to a more sustainable and diversified energy mix.

Commercial-Scale Deployments

Commercial-scale deployments are poised to be a driving force behind the growth of the global Wave And Tidal Energy market. As the world seeks sustainable and renewable energy sources to combat climate change, Wave And Tidal Energy stands out as a reliable and eco-friendly option. The transition from small-scale pilot projects to large-scale commercial installations is gathering momentum, unlocking the immense potential of harnessing the energy of tides.

These commercial deployments offer several advantages. Firstly, they provide valuable data and insights to improve technology efficiency and reliability, making Wave And Tidal Energy more economically viable. Secondly, they attract significant investments, fostering innovation and infrastructure development. As governments and industries commit to reducing carbon emissions, tidal power's predictability and consistent energy generation make it an attractive option. Furthermore, commercial-scale deployments help establish Wave And Tidal Energy as a dependable part of the global energy mix, reducing reliance on fossil fuels and contributing to a greener future. This shift towards large-scale projects will undoubtedly propel the global Wave And Tidal Energy market forward, making it a vital player in the renewable energy landscape. The commercialization of Wave And Tidal Energy is a pivotal step toward a more sustainable and resilient energy future.

Segmental Insights

Technology Insights

By technology, the tidal stream generator segment dominated the global wave and tidal energy market in 2020, and is projected to remain the fastest-growing segment during the forecast period. This is attributed to rise in the tidal energy infrastructure leading to increase in demand for tidal stream generator, which may act as the major driving factor for the market.

Application Insights

By application, the power generation segment dominated the global wave and tidal energy market in 2020, and is projected to remain the fastest-growing segment during the forecast period. This is attributed to rising dependency on electricity, which may act as the major driving factor for the market. Moreover, driving factors include a shift toward cleaner fuel sources and plans to increase the proportion of renewable energy in the absolute power generation mix across the globe including all the major developed and emerging economies.

Regional Insights

Europe plays a significant role in the global Wave And Tidal Energy market; Europe planned a series of Wave And Tidal Energy plants coming into operation or getting grid-connected recently. Countries like the United Kingdom and Denmark are the most highlighted parts of the region.

According to a 2021 study conducted by experts at Edinburgh University, tidal stream alone has the potential to produce 11% of the United Kingdom's current annual electricity demand, which is the same as the combined contribution of solar and biomass over the previous year. Moreover, in May 2022, Minesto completed the first week of commissioning the Dragon 4 Wave And Tidal Energy plant in Vestmanna, Faroe Islands, Denmark, including energy production and verification of all critical operations. Minesto's Deep Green Kite technology is cost-effective in places with low-flow tidal streams and ocean currents.

Such developments will likely boost the region's position in the Wave And Tidal Energy market's growth.

Key Market Players

Andritz AG

Nova Innovation Ltd

Orbital Marine Power Ltd

MAKO Turbines Pty Ltd

SIMEC Atlantis Energy Ltd

Hydroquest SAS

Sustainable Marine Energy Ltd

Lockheed Martin Corporation

Report Scope:

In this report, the Global Wave And Tidal Energy Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Wave And Tidal Energy Market, By Type:

  • Wave Energy
  • Tidal Energy

Wave And Tidal Energy Market, By Technology:

  • Tidal stream generator
  • Oscillating Water Columns
  • Tidal turbines
  • Tidal barrages
  • Tidal fences

Wave And Tidal Energy Market, By Application:

  • Power generation
  • Desalination

Wave And Tidal Energy Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Asia-Pacific
  • China
  • India
  • Japan
  • South Korea
  • Indonesia
  • Europe
  • Germany
  • United Kingdom
  • France
  • Russia
  • Spain
  • South America
  • Brazil
  • Argentina
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • Egypt
  • UAE
  • Israel

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies presents in the Global Wave And Tidal Energy Market.

Available Customizations:

  • Global Wave And Tidal Energy Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
  • 1.3. Markets Covered
  • 1.4. Years Considered for Study
  • 1.5. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

4. Voice of Customers

5. Global Wave And Tidal Energy Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Wave Energy, Tidal Energy)
    • 5.2.2. By Technology (Tidal stream generator, Oscillating Water Columns, Tidal turbines, Tidal barrages, Tidal fences)
    • 5.2.3. By Application (Power generation, Desalination)
    • 5.2.4. By Region
  • 5.3. By Company (2022)
  • 5.4. Market Map

6. North America Wave And Tidal Energy Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Technology
    • 6.2.3. By Application
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Wave and Tidal Energy Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Application
    • 6.3.2. Canada Wave And Tidal Energy Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Application
    • 6.3.3. Mexico Wave And Tidal Energy Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Application

7. Asia-Pacific Wave And Tidal Energy Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Technology
    • 7.2.3. By Application
    • 7.2.4. By Country
  • 7.3. Asia-Pacific: Country Analysis
    • 7.3.1. China Wave And Tidal Energy Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Application
    • 7.3.2. India Wave And Tidal Energy Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Application
    • 7.3.3. Japan Wave And Tidal Energy Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Application
    • 7.3.4. South Korea Wave And Tidal Energy Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Application
    • 7.3.5. Indonesia Wave And Tidal Energy Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Application

8. Europe Wave And Tidal Energy Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Technology
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Wave And Tidal Energy Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Application
    • 8.3.2. United Kingdom Wave And Tidal Energy Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Application
    • 8.3.3. France Wave And Tidal Energy Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Application
    • 8.3.4. Russia Wave And Tidal Energy Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Application
    • 8.3.5. Spain Wave And Tidal Energy Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Application

9. South America Wave And Tidal Energy Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Technology
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Wave And Tidal Energy Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Application
    • 9.3.2. Argentina Wave And Tidal Energy Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Application

10. Middle East & Africa Wave And Tidal Energy Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Technology
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Saudi Arabia Wave And Tidal Energy Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Application
    • 10.3.2. South Africa Wave And Tidal Energy Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Application
    • 10.3.3. UAE Wave And Tidal Energy Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Application
    • 10.3.4. Israel Wave And Tidal Energy Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Technology
        • 10.3.4.2.3. By Application
    • 10.3.5. Egypt Wave And Tidal Energy Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Technology
        • 10.3.5.2.3. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.1. Challenge

12. Market Trends & Developments

13. Company Profiles

  • 13.1. Andritz AG
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services
  • 13.2. Nova Innovation Ltd
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel
    • 13.2.5. Key Product/Services
  • 13.3. Orbital Marine Power Ltd
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel
    • 13.3.5. Key Product/Services
  • 13.4. MAKO Turbines Pty Ltd
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel
    • 13.4.5. Key Product/Services
  • 13.5. SIMEC Atlantis Energy Ltd
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel
    • 13.5.5. Key Product/Services
  • 13.6. Hydroquest SAS
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel
    • 13.6.5. Key Product/Services
  • 13.7. Sustainable Marine Energy Ltd
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel
    • 13.7.5. Key Product/Services
  • 13.8. Lockheed Martin Corporation
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel
    • 13.8.5. Key Product/Services

14. Strategic Recommendations

15. About Us & Disclaimer