封面
市场调查报告书
商品编码
1477366

转染试剂和设备市场 - 全球产业规模、份额、趋势、机会和预测,按方法、应用、地区和竞争细分,2019-2029F

Transfection Reagent and Equipment Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Method, By Application, By Region, and By Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 182 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023 年,全球转染试剂和设备市场价值为11.9421 亿美元,到2029 年,预测期内复合年增长率将达到9.43%。 ,例如DNA、RNA 和寡核苷酸进入活细胞。转染过程使研究人员能够操纵基因表现、研究基因功能并调节细胞过程,以用于各种研究、治疗和生物技术应用。转染试剂是一种旨在促进核酸递送至标靶细胞中的化学製剂。这些试剂通常含有阳离子脂质、聚合物或奈米颗粒,它们与核酸形成复合物,保护它们免于降解并促进它们被细胞吸收。转染试剂的效率、特异性、毒性以及与不同细胞类型和核酸构建体的兼容性各不相同。转染设备包括用于使用物理或电方法将核酸递送到细胞中的仪器和装置。这些技术提供了化学转染试剂的替代方法,对于难以转染的细胞类型或特殊应用特别有用。透过调节基因表现量或在标靶细胞中引入突变来研究基因功能、调控网络和讯号路径。表达报告基因、萤光蛋白或标记蛋白以研究蛋白质定位、蛋白质-蛋白质相互作用和转录调控。

市场概况
预测期 2025-2029
2023 年市场规模 11.9421亿美元
2029 年市场规模 203274万美元
2024-2029 年复合年增长率 9.43%
成长最快的细分市场 电穿孔
最大的市场 北美洲

基因治疗和细胞疗法领域的不断扩大在很大程度上依赖于将治疗基因、基因编辑工具和基于 RNA 的疗法传递到目标细胞中的转染技术。转染试剂和设备在开发遗传性疾病的基因疗法、癌症治疗和再生医学应用中发挥着至关重要的作用。製药和生物技术产业对药物发现和开发的日益关注推动了对用于标靶验证、功能基因组学研究和高通量筛选分析的转染试剂和设备的需求。转染技术使研究人员能够探索新的药物标靶、评估候选药物并加速药物开发过程。功能基因组学和蛋白​​质组学研究依靠转染试剂和设备来调节基因表现、评估蛋白质功能并研究细胞过程和疾病发病机制中涉及的信号通路。转染技术使研究人员能够进行全基因组筛选、RNA 干扰 (RNAi) 研究和蛋白质定位测定,有助于我们了解基因功能和调控。

主要市场驱动因素

基因治疗和细胞治疗中的应用不断增长

技术创新和产品开发

扩大 CRISPR-Cas9 基因编辑的采用

主要市场挑战

细胞毒性和细胞活力

再现性和标准化

主要市场趋势

瞬时转染日益受到重视

细分市场洞察

方法见解

应用洞察

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球转染试剂与设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依方法分类(电穿孔、脂质体、粒子轰击、显微注射、腺病毒载体、磷酸钙、DEAE-葡聚醣、磁珠、活化树枝状聚合物、雷射转染)
    • 按应用(基因表现研究、蛋白质生产、基因改造模型、治疗传递、癌症研究、生物医学研究)
    • 按地区
    • 按公司划分 (2023)
  • 市场地图

第 6 章:北美转染试剂与设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依方法
    • 按申请
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 7 章:欧洲转染试剂与设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依方法
    • 按申请
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙

第 8 章:亚太地区转染试剂与设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依方法
    • 按申请
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第 9 章:南美洲转染试剂与设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依方法
    • 按申请
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第10章:中东及非洲转染试剂及设备市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依方法
    • 按申请
    • 按国家/地区
  • MEA:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 併购(如有)
  • 产品发布(如有)
  • 最近的发展

第 13 章:波特的五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第14章:竞争格局

  • Thermo Fisher Scientific, Inc.
  • Promega Corporation
  • F. Hoffmann-La Roche Ltd.
  • Bio-Rad Laboratories Inc.
  • Merck KGaA
  • OriGene Technologies Inc.
  • MaxCyte, Inc.
  • POLYPLUS TRANSFECTION SA
  • Horizon Discovery Ltd.
  • PromoCell GmbH.

第 15 章:策略建议

第16章调查会社について・免责事项

简介目录
Product Code: 24008

Global Transfection Reagent and Equipment Market was valued at USD 1194.21 million in 2023 and will see impressive growth in the forecast period at a CAGR of 9.43% through 2029. Transfection reagents and equipment are essential tools in molecular biology and biotechnology to introduce nucleic acids, such as DNA, RNA, and oligonucleotides, into living cells. The process of transfection allows researchers to manipulate gene expression, study gene function, and modulate cellular processes for various research, therapeutic, and biotechnological applications. Transfection reagents are chemical formulations designed to facilitate the delivery of nucleic acids into target cells. These reagents typically contain cationic lipids, polymers, or nanoparticles that form complexes with nucleic acids, protecting them from degradation and promoting their uptake by cells. Transfection reagents vary in their efficiency, specificity, toxicity, and compatibility with different cell types and nucleic acid constructs. Transfection equipment includes instruments and devices used to deliver nucleic acids into cells using physical or electrical methods. These techniques offer alternative approaches to chemical transfection reagents and are particularly useful for hard-to-transfect cell types or specialized applications. Studying gene function, regulatory networks, and signaling pathways by modulating gene expression levels or introducing mutations in target cells. Expressing reporter genes, fluorescent proteins, or tagged proteins to study protein localization, protein-protein interactions, and transcriptional regulation.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 1194.21 Million
Market Size 2029USD 2032.74 Million
CAGR 2024-20299.43%
Fastest Growing SegmentElectroporation
Largest MarketNorth America

The expanding field of gene therapy and cell-based therapeutics relies heavily on transfection technologies for delivering therapeutic genes, gene editing tools, and RNA-based therapeutics into target cells. Transfection reagents and equipment play a crucial role in developing gene therapies for genetic disorders, cancer treatment, and regenerative medicine applications. The pharmaceutical and biotechnology industries' growing focus on drug discovery and development drives demand for transfection reagents and equipment for target validation, functional genomics studies, and high-throughput screening assays. Transfection technologies enable researchers to explore novel drug targets, evaluate drug candidates, and accelerate the drug development process. Functional genomics and proteomics studies rely on transfection reagents and equipment to modulate gene expression, assess protein function, and investigate signaling pathways involved in cellular processes and disease pathogenesis. Transfection technologies enable researchers to perform genome-wide screens, RNA interference (RNAi) studies, and protein localization assays, contributing to our understanding of gene function and regulation.

Key Market Drivers

Growing Applications in Gene Therapy and Cell-based Therapeutics

Gene therapy involves delivering therapeutic genes or nucleic acids into target cells to treat genetic disorders, cancers, and other diseases. Transfection reagents and equipment play a crucial role in facilitating the efficient delivery of therapeutic genes, such as DNA or RNA constructs, into patient cells, allowing for the expression of functional proteins or RNA molecules that can correct genetic defects or modulate disease pathways. Transfection reagents and equipment are used in the production of viral vectors, such as adenovirus, Adeno-Associated virus (AAV), lentivirus, and retrovirus, which serve as vehicles for delivering therapeutic genes to target cells in gene therapy applications. Transfection technologies enable the packaging of viral genomes into viral particles and the subsequent transduction of target cells for gene delivery and expression. Cell-based immunotherapies, including chimeric antigen receptor (CAR) T-cell therapy and adoptive cell transfer (ACT) therapy, involve genetically modifying patient immune cells to recognize and target cancer cells or pathogens. Transfection reagents and equipment are utilized to introduce therapeutic genes encoding CARs or other immune receptors into patient T cells, enabling them to recognize and eliminate cancer cells or infected cells.

Stem cell-based therapies hold promise for regenerative medicine, tissue engineering, and disease modeling applications. Transfection technologies are employed to genetically modify stem cells, including induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs), for enhancing their differentiation potential, promoting tissue repair, and generating cell-based models of disease for drug discovery and screening. The development of RNA-based therapeutics, such as small interfering RNA (siRNA), microRNA (miRNA), and messenger RNA (mRNA) therapies, relies on efficient delivery of RNA molecules into target cells to modulate gene expression or protein function. Transfection reagents and equipment are essential for delivering RNA-based therapeutics into cells, enabling the regulation of gene expression, the inhibition of disease-associated genes, and the restoration of cellular homeostasis. This factor will help in the development of the Global Transfection Reagent and Equipment Market.

Technological Innovations and Product Development

Innovations in transfection reagents and equipment aim to improve transfection efficiency, enabling higher levels of gene delivery and expression in target cells. This includes the development of novel transfection reagents with optimized chemical formulations, as well as the design of transfection instruments that enhance nucleic acid delivery into cells while minimizing cytotoxicity and off-target effects. Modern transfection technologies focus on reducing cytotoxicity and cell stress associated with traditional transfection methods. Innovations in transfection reagents and protocols aim to minimize cellular toxicity and maintain cell viability and functionality, ensuring reliable and reproducible experimental results without compromising cell health. Advances in transfection technology enable cell type-specific transfection methods tailored to different cell types and experimental requirements. Researchers can choose from a variety of transfection reagents and techniques optimized for specific cell lines, primary cells, and hard-to-transfect cells, allowing for efficient gene delivery and expression across diverse cell types and applications.

Innovative transfection reagents and equipment offer versatility and compatibility with various nucleic acids, including plasmid DNA, RNA, siRNA, miRNA, and CRISPR-Cas9 gene editing tools. This flexibility enables researchers to perform a wide range of molecular biology experiments, gene expression studies, functional genomics screens, and gene editing applications using a single transfection platform. Transfection technologies are continuously evolving to meet the growing demand for high-throughput screening and large-scale transfection experiments in drug discovery, functional genomics, and bioproduction. Scalable transfection reagents and automated transfection systems enable efficient transfection of large numbers of cells and facilitate streamlined workflows for high-throughput screening assays and bioprocess optimization. Integration of transfection technologies with advanced imaging and analysis techniques enables real-time monitoring and characterization of cellular responses to gene delivery and expression. Innovative imaging modalities, such as live-cell imaging and high-content analysis, provide insights into cellular dynamics, protein localization, and functional interactions, enhancing our understanding of cellular processes and disease mechanisms. This factor will pace up the demand of the Global Transfection Reagent and Equipment Market.

Expanding Adoption of CRISPR-Cas9 Gene Editing

CRISPR-Cas9 gene editing requires the delivery of CRISPR components, including the Cas9 nuclease and guide RNA (gRNA), into target cells to induce precise genome modifications. Transfection reagents and equipment serve as essential tools for delivering CRISPR components into cells efficiently and accurately. CRISPR-Cas9 technology enables precise and targeted genome editing by introducing double-strand breaks (DSBs) at specific genomic loci, which can result in gene knockout, gene insertion, or gene correction. Transfection reagents facilitate the delivery of CRISPR components to a wide range of cell types and organisms, allowing researchers to perform targeted genome editing experiments in diverse biological systems. Efficient delivery of CRISPR components is critical for achieving successful genome editing outcomes. Transfection reagents and equipment are continuously optimized to enhance transfection efficiency, ensuring high levels of CRISPR-Cas9-mediated genome editing in target cells while minimizing off-target effects and cellular toxicity.

Advanced transfection technologies streamline CRISPR workflows by providing user-friendly protocols, optimized transfection reagents, and automated transfection systems. These tools enable researchers to perform large-scale CRISPR screens, high-throughput genome editing experiments, and multiplexed gene knockout studies with ease and efficiency. CRISPR-Cas9 gene editing has revolutionized functional genomics research by enabling systematic interrogation of gene function, identification of drug targets, and discovery of novel therapeutic candidates. Transfection reagents and equipment play a pivotal role in translating CRISPR-based discoveries into potential therapeutics for treating genetic disorders, cancers, and infectious diseases. CRISPR-Cas9 gene editing holds immense promise for developing targeted therapies and personalized medicine approaches. Transfection technologies are essential for delivering CRISPR-based gene editing tools to patient cells for ex vivo gene therapy, cell-based immunotherapy, and in vivo genome editing applications. This factor will accelerate the demand of the Global Transfection Reagent and Equipment Market.

Key Market Challenges

Cytotoxicity and Cell Viability

Cytotoxicity resulting from transfection reagents and equipment can compromise the reliability and reproducibility of experimental results. Cell death or impaired cell function due to cytotoxic effects may skew data interpretation and lead to erroneous conclusions, particularly in cell-based assays, gene expression studies, and functional genomics experiments. The extent of cytotoxicity varies depending on the cell type, transfection method, and experimental conditions. Some cell lines may be more sensitive to transfection-induced cytotoxicity than others, necessitating careful optimization of transfection protocols and selection of compatible transfection reagents and equipment for specific cell types and applications. Primary cells and stem cells are often more sensitive to transfection-induced cytotoxicity compared to immortalized cell lines. Maintaining high cell viability and functionality is crucial for preserving the physiological relevance of primary cells and stem cells in experimental models, making cytotoxicity mitigation strategies essential for successful transfection experiments. Transient transfection methods, which involve transient expression of exogenous genes or nucleic acids in target cells, are generally associated with lower cytotoxicity compared to stable transfection methods, which result in long-term expression or integration of foreign DNA into the host genome. However, even transient transfection can induce cytotoxic effects if not optimized properly, highlighting the importance of balancing transfection efficiency with cell viability. Cytotoxicity associated with transfection reagents and equipment may also result in off-target effects, including non-specific cellular responses, inflammatory reactions, and immune activation. Minimizing off-target effects requires optimizing transfection conditions, reducing exposure to cytotoxic agents, and selecting transfection reagents and techniques that minimize cellular stress and inflammatory responses.

Reproducibility and Standardization

Transfection efficiency can vary significantly depending on factors such as cell type, culture conditions, transfection method, and reagent formulation. Inconsistent transfection efficiency across experiments can lead to variability in experimental outcomes and hinder the reproducibility of research results. Different cell lines may require specific transfection protocols and reagents to achieve optimal transfection efficiency and minimize cytotoxicity. Researchers often need to invest time and resources in optimizing transfection conditions for each cell type, which can lead to inconsistencies between laboratories and hinder cross-study comparisons. The absence of standardized protocols for transfection reagents and equipment contributes to variability in experimental procedures and outcomes. Researchers may use different transfection protocols, reagent concentrations, and transfection techniques based on individual preferences or experimental requirements, making it challenging to compare results across studies and reproduce experimental findings. Inconsistent quality control measures in transfection reagent and equipment manufacturing processes can contribute to batch-to-batch variability and product performance issues. Variations in reagent purity, stability, and functionality may affect transfection efficiency and reproducibility, highlighting the importance of stringent quality control standards and product validation procedures. Translating transfection protocols and experimental workflows across different laboratories and research settings can introduce interlaboratory variability, leading to discrepancies in experimental results and data interpretation. Standardizing transfection protocols, sharing best practices, and participating in interlaboratory proficiency testing initiatives can help mitigate variability and improve reproducibility across research institutions.

Key Market Trends

Growing Emphasis on Transient Transfection

Transient transfection allows for the transient expression of exogenous genes or nucleic acids in target cells without permanent genomic integration. This flexibility enables researchers to study short-term gene expression dynamics, regulatory pathways, and cellular responses to experimental manipulations, facilitating rapid hypothesis testing and functional genomics studies. Unlike stable transfection methods that result in permanent genomic alterations or integration of exogenous DNA into the host genome, transient transfection minimizes the risk of unintended genetic modifications and off-target effects. This is particularly important in basic research and preclinical studies where precise control over gene expression and cellular phenotypes is essential for data interpretation and experimental validation. Transient transfection is well-suited for high-throughput screening assays, drug discovery efforts, and assay development projects that require rapid and scalable evaluation of gene function, drug candidates, and therapeutic targets. Transiently transfected cells can be used in multiplexed assays, reporter gene assays, and phenotypic screens to identify novel drug candidates, characterize drug mechanisms, and assess compound efficacy in vitro. Transient transfection allows researchers to modulate gene expression levels dynamically and temporally in response to experimental stimuli, pharmacological agents, or environmental cues. This dynamic control over gene expression facilitates the study of transient biological processes, developmental pathways, and signaling dynamics involved in cellular homeostasis, differentiation, and disease progression. Transient transfection methods are often more cost-effective and less complex compared to stable transfection techniques, which require selection and clonal expansion of transfected cells to isolate stable cell lines. By eliminating the need for antibiotic selection and clonal isolation, transient transfection streamlines experimental workflows, reduces experimental costs, and accelerates data acquisition and analysis.

Segmental Insights

Method Insights

The Particle Bombardment segment is dominating the Global Transfection Reagent and Equipment Market during the forecast period. Particle bombardment, also known as biolistic or gene gun transfection, offers a unique advantage in transfecting cells that are traditionally difficult to transfect using chemical or viral methods. This includes cells with tough cell walls, primary cells, and certain plant cells. The ability to efficiently deliver nucleic acids into these cell types makes particle bombardment a valuable tool in various research and biotechnology applications. Particle bombardment is applicable across a wide range of cell types and species, including mammalian cells, plant cells, fungi, and bacteria. This versatility allows researchers to study gene function, protein expression, and cellular processes in diverse biological systems, expanding the scope of research and applications in areas such as molecular biology, biotechnology, agriculture, and medicine. Unlike some chemical transfection methods that may induce cellular toxicity and interfere with cell viability and function, particle bombardment minimizes cellular toxicity and cytotoxicity by delivering nucleic acids directly into the cell nucleus or cytoplasm without the need for transfection reagents or viral vectors. This enhances cell viability and preserves cellular integrity, particularly in sensitive cell types and primary cell cultures. Particle bombardment allows researchers to exert precise control over transfection parameters, including particle size, velocity, and penetration depth, thereby optimizing transfection efficiency, and achieving reproducible results. This level of control enables fine-tuning of transfection conditions for specific cell types, experimental objectives, and downstream applications.

Application Insights

The Gene Expression Studies segment is dominating the Market during the forecast period. Gene expression studies play a crucial role in functional genomics research aimed at understanding the complex mechanisms underlying gene regulation, cellular processes, and disease pathways. As researchers seek to unravel the intricacies of gene expression patterns and regulatory networks, there is a growing demand for transfection reagents and equipment to facilitate gene modulation and expression analysis. Recent advancements in transcriptomics technologies, including RNA sequencing and single-cell analysis, have revolutionized the study of gene expression at unprecedented resolution and scale. Transfection reagents and equipment are essential tools for manipulating gene expression levels in cell-based assays and experimental models, enabling researchers to validate gene expression profiles and decipher their functional significance. The pharmaceutical industry's increasing focus on target identification, validation, and drug discovery drives demand for gene expression studies to elucidate drug targets, biomarkers, and therapeutic mechanisms. Transfection technologies enable researchers to modulate gene expression levels and assess the impact on cellular phenotypes, drug response, and disease pathways, facilitating the discovery and development of novel therapeutics. Functional genomics approaches, such as CRISPR-Cas9 gene editing and RNA interference (RNAi), enable precise manipulation of gene expression to study gene function, disease mechanisms, and therapeutic targets. Transfection reagents and equipment are essential for delivering nucleic acids, including plasmid DNA, siRNA, and mRNA, into target cells to modulate gene expression levels and investigate gene function in diverse biological contexts.

Regional Insights

North America emerged as the dominant region in the Global Transfection Reagent and Equipment Market in 2023. North America, particularly the United States, boasts a robust research infrastructure with leading academic institutions, research laboratories, and biotechnology companies. The region's well-established scientific community drives innovation and fosters the development of advanced transfection technologies. North America attracts significant investments in biotechnology and life sciences research and development. The availability of funding from government agencies, private investors, and venture capital firms enables continuous exploration and advancement in transfection reagents and equipment. The region is home to numerous biotechnology and pharmaceutical companies at the forefront of technological innovation. These companies invest heavily in research and development to develop cutting-edge transfection reagents and equipment, driving market growth and competitiveness. North American companies actively engage in strategic partnerships and collaborations with academic institutions, research organizations, and industry players worldwide. These collaborations facilitate knowledge exchange, technology transfer, and the development of novel transfection solutions tailored to specific research and therapeutic applications.

Key Market Players

Thermo Fisher Scientific, Inc.

Promega Corporation

F. Hoffmann-La Roche Ltd.

Bio-Rad Laboratories Inc.

Merck KGaA

OriGene Technologies Inc.

MaxCyte, Inc.

POLYPLUS TRANSFECTION S.A.

Horizon Discovery Ltd.

PromoCell GmbH.

Report Scope:

In this report, the Global Transfection Reagent and Equipment Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Transfection Reagent and Equipment Market, By Method:

    Electroporation Liposomes Particle Bombardment Microinjection Adenoviral Vectors Calcium Phosphate DEAE-dextran Magnetic Beads Activated Dendrimers Laserfection

Transfection Reagent and Equipment Market, By Application:

    Gene Expression Studies Protein Production Transgenic Models Therapeutic Delivery Cancer Research Biomedical Research

Transfection Reagent and Equipment Market, By Region:

    North America

United States

Canada

Mexico

    Europe

Germany

United Kingdom

France

Italy

Spain

    Asia-Pacific

China

Japan

India

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Transfection Reagent and Equipment Market.

Available Customizations:

Global Transfection Reagent and Equipment market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Transfection Reagent and Equipment Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Method (Electroporation, Liposomes, Particle Bombardment, Microinjection, Adenoviral Vectors, Calcium Phosphate, DEAE-dextran, Magnetic Beads, Activated Dendrimers, Laserfection)
    • 5.2.2. By Application (Gene Expression Studies, Protein Production, Transgenic Models, Therapeutic Delivery, Cancer Research, Biomedical Research)
    • 5.2.3. By Region
    • 5.2.4. By Company (2023)
  • 5.3. Market Map

6. North America Transfection Reagent and Equipment Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Method
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Transfection Reagent and Equipment Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Method
        • 6.3.1.2.2. By Application
    • 6.3.2. Canada Transfection Reagent and Equipment Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Method
        • 6.3.2.2.2. By Application
    • 6.3.3. Mexico Transfection Reagent and Equipment Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Method
        • 6.3.3.2.2. By Application

7. Europe Transfection Reagent and Equipment Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Method
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Transfection Reagent and Equipment Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Method
        • 7.3.1.2.2. By Application
    • 7.3.2. United Kingdom Transfection Reagent and Equipment Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Method
        • 7.3.2.2.2. By Application
    • 7.3.3. Italy Transfection Reagent and Equipment Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Method
        • 7.3.3.2.2. By Application
    • 7.3.4. France Transfection Reagent and Equipment Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Method
        • 7.3.4.2.2. By Application
    • 7.3.5. Spain Transfection Reagent and Equipment Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Method
        • 7.3.5.2.2. By Application

8. Asia-Pacific Transfection Reagent and Equipment Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Method
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Transfection Reagent and Equipment Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Method
        • 8.3.1.2.2. By Application
    • 8.3.2. India Transfection Reagent and Equipment Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Method
        • 8.3.2.2.2. By Application
    • 8.3.3. Japan Transfection Reagent and Equipment Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Method
        • 8.3.3.2.2. By Application
    • 8.3.4. South Korea Transfection Reagent and Equipment Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Method
        • 8.3.4.2.2. By Application
    • 8.3.5. Australia Transfection Reagent and Equipment Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Method
        • 8.3.5.2.2. By Application

9. South America Transfection Reagent and Equipment Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Method
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Transfection Reagent and Equipment Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Method
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Transfection Reagent and Equipment Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Method
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Transfection Reagent and Equipment Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Method
        • 9.3.3.2.2. By Application

10. Middle East and Africa Transfection Reagent and Equipment Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Method
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Transfection Reagent and Equipment Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Method
        • 10.3.1.2.2. By Application
    • 10.3.2. Saudi Arabia Transfection Reagent and Equipment Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Method
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Transfection Reagent and Equipment Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Method
        • 10.3.3.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porter's Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Product

14. Competitive Landscape

  • 14.1. Thermo Fisher Scientific, Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. Promega Corporation
  • 14.3. F. Hoffmann-La Roche Ltd.
  • 14.4. Bio-Rad Laboratories Inc.
  • 14.5. Merck KGaA
  • 14.6. OriGene Technologies Inc.
  • 14.7. MaxCyte, Inc.
  • 14.8. POLYPLUS TRANSFECTION S.A.
  • 14.9. Horizon Discovery Ltd.
  • 14.10.PromoCell GmbH.

15. Strategic Recommendations

16. About Us & Disclaimer