![]() |
市场调查报告书
商品编码
1493557
脑监测市场 - 全球产业规模、份额、趋势、机会和预测,按设备、最终用户、应用程式、地区和竞争细分,2019-2029FBrain Monitoring Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Device, By End-User, By Application, By Region, and By Competition, 2019-2029F |
2023 年,全球脑监测市场估值为34.6 亿美元,到2029 年,预测期内将以6.59% 的复合年增长率实现令人印象深刻的增长。活动、和生理学使用专门的技术和技术。大脑监测的主要目标是获取有关大脑状态的即时或近实时信息,使医疗保健提供者、研究人员和临床医生能够监测大脑健康、诊断神经系统疾病、指导治疗决策和评估治疗反应。大脑监测技术涵盖广泛的模式和方法,每种模式和方法都提供了大脑功能和病理学不同方面的独特见解。脑电图是一种非侵入性技术,透过记录放置在头皮上的电极的电讯号来测量大脑的电活动。脑电图用于评估大脑功能,检测与癫痫发作、癫痫、睡眠障碍相关的异常电模式,并在麻醉和神经重症监护期间监测大脑活动。功能性磁振造影是一种非侵入性影像技术,可测量大脑中血流和氧合水平的变化,从而反映神经活动。功能性磁振造影用于绘製大脑功能图,识别参与特定任务或认知过程的大脑区域,并研究神经系统疾病和精神疾病的神经相关性。
市场概况 | |
---|---|
预测期 | 2025-2029 |
2023 年市场规模 | 34.6亿美元 |
2029 年市场规模 | 50.9亿美元 |
2024-2029 年复合年增长率 | 6.59% |
成长最快的细分市场 | 核磁共振成像 |
最大的市场 | 北美洲 |
脑部监测技术的不断进步,包括脑电图(EEG)、脑磁图(MEG)、功能性磁振造影(fMRI)、正子断层扫描(PET)和近红外光谱(NIRS),推动了市场成长。技术创新提高了大脑监测设备的准确性、灵敏度和可靠性,使医疗保健提供者能够获得有关大脑功能和病理学的宝贵见解。人们越来越认识到大脑健康的重要性以及大脑监测在预防、诊断和治疗神经系统疾病中的作用。公共教育活动、宣传工作以及医疗保健组织和政府机构的倡议提高了人们对早期发现和干预大脑相关疾病重要性的认识,从而推动了对大脑监测技术的需求。向家庭医疗保健和远端监控解决方案的转变加速了市场成长。无线和穿戴式大脑监测设备的进步使患者能够在传统临床环境之外即时监测其大脑活动和神经健康状况。 COVID-19 大流行进一步强调了远端监控解决方案的重要性,刺激了远距医疗和远端患者监控技术的创新和采用。
技术进步
人们对大脑健康的认识和重要性不断增强
家庭医疗保健和远端监控的快速成长
设备成本高
复杂的监管环境
重症监护环境中脑部监测的整合
设备洞察
区域洞察
Global Brain Monitoring Market was valued at USD 3.46 billion in 2023 and will see an impressive growth in the forecast period at a CAGR of 6.59% through 2029. Brain monitoring refers to the process of continuously or intermittently assessing various aspects of brain function, activity, and physiology using specialized techniques and technologies. The primary goal of brain monitoring is to obtain real-time or near-real-time information about the brain's status, allowing healthcare providers, researchers, and clinicians to monitor brain health, diagnose neurological disorders, guide treatment decisions, and evaluate treatment responses. Brain monitoring techniques encompass a wide range of modalities and methods, each offering unique insights into different aspects of brain function and pathology. EEG is a non-invasive technique that measures electrical activity in the brain by recording electrical signals from electrodes placed on the scalp. EEG is used to assess brain function, detect abnormal electrical patterns associated with seizures, epilepsy, sleep disorders, and monitor brain activity during anesthesia and neurocritical care. fMRI is a non-invasive imaging technique that measures changes in blood flow and oxygenation levels in the brain, reflecting neural activity. fMRI is used to map brain function, identify regions of the brain involved in specific tasks or cognitive processes, and investigate the neural correlates of neurological disorders and psychiatric conditions.
Market Overview | |
---|---|
Forecast Period | 2025-2029 |
Market Size 2023 | USD 3.46 Billion |
Market Size 2029 | USD 5.09 Billion |
CAGR 2024-2029 | 6.59% |
Fastest Growing Segment | MRI |
Largest Market | North America |
Ongoing advancements in brain monitoring technologies, including electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and near-infrared spectroscopy (NIRS), drive market growth. Technological innovations improve the accuracy, sensitivity, and reliability of brain monitoring devices, enabling healthcare providers to obtain valuable insights into brain function and pathology. There is increasing awareness of the importance of brain health and the role of brain monitoring in preventing, diagnosing, and treating neurological disorders. Public education campaigns, advocacy efforts, and initiatives by healthcare organizations and government agencies raise awareness about the significance of early detection and intervention in brain-related conditions, driving demand for brain monitoring technologies. The shift towards home healthcare and remote monitoring solutions accelerates market growth. Advancements in wireless and wearable brain monitoring devices enable patients to monitor their brain activity and neurological health in real-time outside traditional clinical settings. The COVID-19 pandemic further emphasizes the importance of remote monitoring solutions, spurring innovation and adoption of telehealth and remote patient monitoring technologies.
Key Market Drivers
Technological Advancements
Advances in EEG electrode design and array configurations have led to high-density EEG systems capable of recording brain activity with greater spatial resolution. Wireless EEG systems allow for more flexible and convenient monitoring, enabling ambulatory and long-term EEG recordings outside of traditional clinical settings. EEG source imaging techniques use computational algorithms to localize the sources of electrical activity within the brain, providing insights into the underlying neural networks and pathological changes associated with neurological disorders. Real-time fMRI techniques enable researchers and clinicians to monitor changes in brain activity as they occur, facilitating neurofeedback training, cognitive rehabilitation, and functional mapping during neurosurgical procedures. Resting-state fMRI allows for the characterization of functional brain networks and connectivity patterns in the absence of specific tasks or stimuli, providing valuable information about intrinsic brain function and organization.
Magnetoencephalography (MEG) systems equipped with SQUID sensors offer high spatial and temporal resolution for non-invasive measurement of magnetic fields generated by neural activity in the brain. Advanced algorithms and modeling techniques enable accurate localization of neuronal sources underlying MEG signals, improving the localization of epileptic foci and functional brain mapping. Near-Infrared Spectroscopy (NIRS) can be integrated with other imaging modalities such as EEG and fMRI to provide complementary information about cerebral hemodynamics, metabolism, and neural activity, enhancing the spatial and temporal resolution of brain monitoring. High-resolution iEEG systems equipped with microelectrode arrays enable precise mapping of epileptic networks and recording of single-neuron activity in patients undergoing epilepsy surgery. Machine learning algorithms and AI-based techniques automate the analysis and interpretation of brain monitoring data, facilitating the identification of biomarkers, patterns of abnormal activity, and predictive models for neurological disorders. Closed-loop systems integrate brain monitoring with real-time feedback and neuromodulation techniques to modulate neural activity and restore normal brain function in conditions such as epilepsy, Parkinson's disease, and depression. This factor will help in the development of the Global Brain Monitoring Market.
Growing Awareness and Importance of Brain Health
Healthcare organizations, advocacy groups, and governmental agencies conduct public education campaigns to raise awareness about brain health, the signs and symptoms of neurological disorders, and the importance of early detection and intervention. These campaigns help educate individuals about the benefits of brain monitoring for maintaining cognitive function and detecting potential neurological conditions. Increased media coverage of brain health topics, including advancements in neuroscience research, brain disorders, and brain fitness, contributes to greater public awareness and interest in brain monitoring technologies. Information sharing through social media, online platforms, and popular press channels helps disseminate knowledge about brain health and the role of monitoring in maintaining cognitive function. As the global population ages, the prevalence of age-related neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and dementia is increasing. Growing awareness of the impact of aging on brain health drives demand for brain monitoring technologies that can aid in early detection, diagnosis, and management of these conditions.
There is a growing recognition of the link between mental health, emotional well-being, and brain function. As societies prioritize mental health awareness and destigmatize discussions about brain-related disorders, individuals become more proactive in monitoring their brain health and seeking preventive measures and treatments when necessary. Technological advancements in brain monitoring, including wearable devices, mobile applications, and home-based monitoring solutions, make brain health monitoring more accessible and convenient for individuals. These technologies empower individuals to track their cognitive performance, monitor changes in brain activity, and take proactive steps to maintain brain health. The shift towards personalized medicine and preventive healthcare encourages individuals to take a proactive approach to their health, including brain health. Brain monitoring technologies enable personalized assessments of cognitive function, brain activity, and neurological health, empowering individuals to make informed decisions about lifestyle choices, interventions, and treatment options. This factor will pace up the demand of the Global Brain Monitoring Market.
Rapid Growth in Home Healthcare and Remote Monitoring
As the global population ages, there is an increasing prevalence of chronic conditions and age-related neurological disorders that require continuous monitoring and management. Home healthcare and remote monitoring technologies allow individuals to receive personalized care and monitoring from the comfort of their homes, reducing the need for frequent hospital visits and improving overall quality of life. Technological advancements in wearable devices, such as EEG headsets, portable EEG monitors, and sleep trackers, enable individuals to monitor their brain activity and neurological health in real-time outside of clinical settings. These wearable devices are lightweight, non-invasive, and easy to use, making them suitable for home-based monitoring and long-term tracking of brain health. The widespread adoption of telehealth and remote patient monitoring platforms facilitates virtual consultations, remote diagnostic assessments, and continuous monitoring of patients with neurological disorders. Brain monitoring technologies integrated with telehealth platforms enable healthcare providers to remotely monitor patients' brain activity, assess treatment responses, and intervene promptly in case of emergencies or changes in health status.
Home healthcare and remote monitoring offer greater convenience and flexibility for patients, especially those with mobility limitations, transportation challenges, or cognitive impairments. By bringing brain monitoring technologies into the home environment, patients can undergo monitoring and assessments in familiar surroundings, reducing stress and anxiety associated with hospital visits. Home-based brain monitoring reduces healthcare costs associated with hospital admissions, emergency room visits, and in-person consultations. Remote monitoring technologies enable early detection of neurological changes, timely intervention, and proactive management of neurological conditions, leading to better health outcomes and reduced healthcare expenditures. The COVID-19 pandemic has accelerated the adoption of home healthcare and remote monitoring solutions as healthcare systems seek to minimize in-person interactions and reduce the risk of virus transmission. Brain monitoring technologies that can be used remotely facilitate continuity of care, support self-management strategies, and enhance patient engagement in neurological health management. This factor will accelerate the demand of the Global Brain Monitoring Market.
Key Market Challenges
High Cost of Devices
Developing advanced brain monitoring devices involves substantial research and development (R&D) expenditures, including costs associated with technology innovation, clinical trials, regulatory compliance, and intellectual property protection. These R&D costs contribute to the high upfront expenses of bringing brain monitoring devices to market. The manufacturing and production processes for brain monitoring devices require specialized equipment, materials, and expertise, which can be expensive. High-quality components, precision engineering, and stringent quality control measures are necessary to ensure the reliability, accuracy, and safety of brain monitoring devices, adding to manufacturing costs. Brain monitoring devices are subject to rigorous regulatory requirements imposed by regulatory agencies such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Obtaining regulatory approvals and certifications for brain monitoring devices entails substantial costs and resources, including pre-market testing, documentation, audits, and ongoing compliance monitoring. Distributing and marketing brain monitoring devices involve additional expenses, including sales commissions, marketing campaigns, trade shows, and distribution channels. Establishing a global distribution network, building brand awareness, and educating healthcare providers and consumers about the benefits of brain monitoring technologies require significant financial investments.
Complex Regulatory Landscape
The Global Brain Monitoring Market operates in multiple jurisdictions with diverse regulatory requirements and standards for medical devices. Companies must navigate varying regulatory frameworks, submission processes, and documentation requirements across different regions and countries, which can be time-consuming, costly, and resource intensive. Brain monitoring devices are classified as medical devices and are subject to stringent regulatory standards to ensure safety, efficacy, and quality. Regulatory agencies such as the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the China National Medical Products Administration (NMPA) impose strict requirements for pre-market approval, post-market surveillance, quality management systems, and adverse event reporting. The regulatory landscape for medical devices is continually evolving in response to technological advancements, market dynamics, and emerging safety concerns. Regulatory agencies regularly update guidelines, policies, and requirements for medical device registration, labeling, and post-market surveillance, posing challenges for device manufacturers to stay compliant and adapt to regulatory changes. Companies operating in the Global Brain Monitoring Market must navigate complex regulatory requirements in international markets, including differences in product classification, registration pathways, and labeling requirements. Harmonizing regulatory standards and achieving regulatory convergence among different countries and regions can streamline market access and facilitate global market expansion.
Key Market Trends
Integration of Brain Monitoring in Critical Care Settings
Neurological conditions such as traumatic brain injury, stroke, seizures, and status epilepticus are common reasons for admission to critical care units. Integrating brain monitoring technologies in critical care settings enables continuous monitoring of brain function, detection of neurological changes, and timely intervention to prevent complications and optimize patient outcomes. Brain monitoring technologies provide real-time insights into brain activity, cerebral perfusion, intracranial pressure, and metabolic status, allowing healthcare providers to detect neurological complications early and intervene promptly. Continuous monitoring of neurological parameters helps identify signs of cerebral ischemia, hemorrhage, edema, and seizure activity, guiding treatment decisions and preventing secondary brain injury in critically ill patients. Integration of brain monitoring with multimodal monitoring systems, such as intracranial pressure (ICP) monitoring, cerebral oximetry, and EEG monitoring, enables comprehensive assessment of brain health and neurological function in critically ill patients. Multimodal monitoring facilitates individualized treatment strategies, titration of therapies, and optimization of neurocritical care management based on real-time data and patient-specific parameters. Technological advancements in brain monitoring technologies, such as intracranial EEG (iEEG), cerebral microdialysis, near-infrared spectroscopy (NIRS), and brain tissue oxygenation monitoring, have expanded the capabilities of neurocritical care monitoring. These advanced monitoring modalities provide valuable information about cerebral metabolism, oxygenation, and tissue perfusion, enhancing the accuracy and sensitivity of neurological assessments in critical care settings.
Segmental Insights
Device Insights
The MRI segment is projected to experience rapid growth in the Global Brain Monitoring Market during the forecast period. MRI provides high-resolution and detailed images of the brain's structure and function, making it a valuable tool for brain monitoring and diagnosis. Compared to other imaging modalities, such as CT scans, MRI offers superior soft tissue contrast and does not involve ionizing radiation, making it safer for patients, particularly for longitudinal monitoring of brain conditions. Ongoing advancements in MRI technology have significantly improved image quality, acquisition speed, and patient comfort. Innovations such as high-field MRI systems, advanced image processing algorithms, and functional MRI (fMRI) techniques have enhanced the accuracy and sensitivity of brain imaging, enabling healthcare providers to detect subtle changes in brain structure and function associated with various neurological disorders. MRI is widely used in neuroimaging applications for diagnosing and monitoring a variety of neurological conditions, including stroke, brain tumors, Alzheimer's disease, multiple sclerosis, and traumatic brain injury. The expanding applications of MRI in clinical practice, research, and drug development drive the demand for brain monitoring solutions based on MRI technology.
Regional Insights
North America emerged as the dominant region in the Global Brain Monitoring Market in 2023. North America is home to some of the world's leading medical device manufacturers and research institutions focused on neuroscience and brain monitoring. The region benefits from a robust ecosystem of innovation, which drives the development of cutting-edge brain monitoring technologies and solutions. The United States, in particular, allocates a significant portion of its GDP to healthcare spending. This high level of healthcare expenditure enables healthcare providers and institutions to invest in advanced medical technologies, including brain monitoring devices and solutions. North America boasts a strong research and development infrastructure, with renowned universities, hospitals, and research centers conducting groundbreaking research in neuroscience and brain monitoring. This ecosystem fosters collaboration between academia, industry, and healthcare providers, leading to the rapid advancement and adoption of brain monitoring technologies.
Dragerwerk Ag & Co. Kgaa
Masimo Corporation
Cadwell Industries, Inc.
NuroWave Systems, Inc.
Neurosoft SA
Cgx (A Cognionics Company)
Natus Medical, Inc.
Nihon Kohden Corporation
Koninklijke Philips N.V.
GE HealthCare Technologies Inc.
In this report, the Global Brain Monitoring Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
United States
Canada
Mexico
Germany
United Kingdom
France
Italy
Spain
China
Japan
India
Australia
South Korea
Brazil
Argentina
Colombia
South Africa
Saudi Arabia
UAE
Company Profiles: Detailed analysis of the major companies present in the Global Brain Monitoring Market.
Global Brain Monitoring market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
Detailed analysis and profiling of additional market players (up to five).