封面
市场调查报告书
商品编码
1532683

智慧型手机製造市场的机器人流程自动化 - 全球产业规模、份额、趋势、机会和预测,按机器人类型、组件、组织规模、地区和竞争细分,2019-2029F

Robotic Process Automation for Smartphone Manufacturing Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Robot Type, By Component, By Organization Size, By Region & Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 181 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023 年,全球智慧型手机製造机器人流程自动化市场估值为47 亿美元,预计在预测期内将强劲成长,到2029 年复合年增长率为21.4%。 。 RPA 整合了人工智慧和机器学习等先进技术,透过自动化传统上由人类执行的重复性任务,彻底改变了智慧型手机製造领域。这种转变减少了错误,加快了生产週期,并优化了资源分配。製造商越来越多地采用 RPA 解决方案来简化组装、品质控制和包装,从而显着降低劳动力成本并提高整体生产力。全球智慧型手机需求不断增长也推动了市场扩张,促使企业寻求创新方法来满足消费者对品质、速度和客製化的期望。随着技术不断发展,RPA 有望在智慧型手机产业不懈追求卓越製造的过程中发挥越来越关键的作用。

市场概况
预测期 2025-2029
2023 年市场规模 47亿美元
2029 年市场规模 151.8亿美元
2024-2029 年复合年增长率 21.4%
成长最快的细分市场 自动化设备
最大的市场 亚太地区

主要市场驱动因素

营运效率和精度

降低成本和优化资源

提高生产力并加速生产週期

品质控制和一致性

技术进步与创新

主要市场挑战

整合复杂性和适应性

资料安全和隐私问题

熟练的劳动力和培训需求

监理合规性和标准

主要市场趋势

人工智慧和机器学习整合的快速发展

专注于协作机器人(Cobots)

RPA 系统的灵活性和可扩展性需求

透过物联网整合增强连接性

强调永续发展和绿色製造

细分市场洞察

机器人类型洞察

组织规模洞察

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:COVID-19 对智慧型手机製造市场全球机器人流程自动化的影响

第 5 章:客户之声

第 6 章:智慧型手机製造市场的全球机器人流程自动化概述

第 7 章:智慧型手机製造的全球机器人流程自动化市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依机器人类型(笛卡儿机器人、SCARA机器人、铰接机器人、Delta机器人、6轴机器人、冗余机器人、双臂机器人和并联机器人)
    • 按组件(马达、发电机、马达控制、自动化设备和输电设备)
    • 按组织规模(中小企业和大型企业)
    • 按地区(北美、欧洲、南美、中东和非洲、亚太地区)
  • 按公司划分 (2023)
  • 市场地图

第 8 章:北美智慧型手机製造机器人流程自动化市场前景

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按机器人类型
    • 按组件
    • 按组织规模
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 9 章:欧洲智慧型手机製造机器人流程自动化市场前景

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按机器人类型
    • 按组件
    • 按组织规模
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙
    • 比利时

第 10 章:南美洲智慧型手机製造机器人流程自动化市场前景

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按机器人类型
    • 按组件
    • 按组织规模
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷
    • 智利
    • 秘鲁

第 11 章:中东和非洲智慧型手机製造机器人流程自动化市场前景

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按机器人类型
    • 按组件
    • 按组织规模
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
    • 土耳其
    • 以色列

第 12 章:亚太地区智慧型手机製造机器人流程自动化市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按机器人类型
    • 按组件
    • 按组织规模
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
    • 印尼
    • 越南

第 13 章:市场动态

  • 司机
  • 挑战

第 14 章:市场趋势与发展

第 15 章:公司简介

  • ABB Ltd.
  • Fanuc Corporation
  • KUKA AG
  • Yaskawa Electric Corporation
  • Suzhou Elite Robot Co., Ltd.
  • Kawasaki Heavy Industries Ltd.
  • Mitsubishi Electric Corporation
  • Denso Corporation
  • Comau SpA
  • Nachi-Fujikoshi Corporation

第 16 章:策略建议

第17章调查会社について・免责事项

简介目录
Product Code: 22630

Global Robotic Process Automation for Smartphone Manufacturing Market was valued at USD 4.7 Billion in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 21.4% through 2029. The global market for Robotic Process Automation for Smartphone Manufacturing has experienced a significant surge driven by the relentless pursuit of operational efficiency, cost reduction, and enhanced precision in the production processes. RPA, integrating advanced technologies like artificial intelligence and machine learning, has revolutionized the smartphone manufacturing landscape by automating repetitive tasks traditionally performed by humans. This transformation has resulted in reduced errors, accelerated production cycles, and optimized resource allocation. Manufacturers increasingly adopt RPA solutions to streamline assembly, quality control, and packaging, significantly reducing labor costs and enhancing overall productivity. The market expansion is also fueled by the escalating demand for smartphones worldwide, prompting companies to seek innovative methods to meet consumer expectations for quality, speed, and customization. As technology continues to evolve, RPA is poised to play an increasingly pivotal role in the relentless pursuit of manufacturing excellence within the smartphone industry.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 4.7 Billion
Market Size 2029USD 15.18 Billion
CAGR 2024-202921.4%
Fastest Growing SegmentAutomation Equipment
Largest MarketAsia Pacific

Key Market Drivers

Operational Efficiency and Precision

Operational efficiency and precision play a pivotal role in driving the Global Robotic Process Automation for Smartphone Manufacturing Market. Robotic Process Automation (RPA) systems are instrumental in streamlining manufacturing processes, significantly enhancing operational efficiency. These systems execute tasks with meticulous precision, minimizing errors in assembling components, conducting quality checks, and managing the overall production line. By automating repetitive and intricate tasks, RPA ensures consistent and accurate execution, reducing the margin for human error and enhancing the quality of smartphones produced. The implementation of RPA optimizes the use of resources, mitigating inefficiencies and wastage in the production process. The precision offered by RPA significantly elevates the accuracy and consistency of tasks, resulting in a higher standard of finished products. These systems operate continuously, ensuring uninterrupted production cycles, thereby improving productivity and meeting the escalating demand for smartphones globally. The amalgamation of operational efficiency and precision through RPA not only accelerates the manufacturing process but also contributes to cost reduction, enabling manufacturers to allocate resources more effectively and remain competitive in the dynamic smartphone market landscape. This focus on efficiency and precision serves as a cornerstone in the advancement and growth of RPA in smartphone manufacturing, offering a vital edge in an industry that demands high-quality, swiftly produced devices to meet consumer expectations.

Cost Reduction and Resource Optimization

Cost reduction and resource optimization are critical drivers propelling the Global Robotic Process Automation for Smartphone Manufacturing Market. RPA systems fundamentally transform the manufacturing landscape by automating tasks that were traditionally labor-intensive. By replacing manual labor with efficient and precise automated systems, manufacturers significantly reduce operational costs, primarily in labor expenses. This optimization allows companies to allocate human resources to more intricate, creative tasks, while repetitive and routine processes are efficiently managed by RPA. The implementation of RPA in smartphone manufacturing not only curtails labor costs but also mitigates errors, consequently reducing material waste and enhancing the overall efficiency of production processes. Additionally, RPA optimizes the utilization of resources, leading to a more streamlined and judicious allocation of materials, time, and energy. By minimizing inefficiencies and maximizing productivity, RPA contributes to cost reduction, ensuring a competitive edge in the dynamic smartphone market. This focus on cost efficiency and resource optimization remains a driving force in the widespread adoption and continuous advancement of RPA in smartphone manufacturing, emphasizing the critical role these systems play in the industry's economic viability and sustainability.

Enhanced Productivity and Accelerated Production Cycles

Enhanced productivity and accelerated production cycles are instrumental in propelling the Global Robotic Process Automation for Smartphone Manufacturing Market. RPA systems revolutionize the manufacturing landscape by significantly boosting productivity through the automation of repetitive tasks, leading to seamless and continuous operations. By replacing manual labor with efficient, automated systems, RPA enables a substantial increase in the speed and output of smartphone production. These systems work tirelessly without the constraints of breaks or fatigue, ensuring uninterrupted manufacturing processes. The precision and consistency of RPA not only enhance the overall quality of smartphones but also expedite production cycles, allowing for quicker turnaround times in delivering smartphones to the market. This heightened productivity serves as a critical driver in meeting the escalating demands for smartphones globally, providing manufacturers with a competitive advantage in a market that thrives on swift innovation and timely product releases. The emphasis on enhanced productivity and accelerated production cycles through RPA underscores its pivotal role in driving efficiency, meeting consumer demands, and shaping the future of smartphone manufacturing.

Quality Control and Consistency

Quality control and consistency are key drivers propelling the Global Robotic Process Automation for Smartphone Manufacturing Market. RPA systems, equipped with advanced sensors and precision control mechanisms, revolutionize quality control in smartphone production by conducting meticulous inspections to ensure each unit meets stringent quality standards. By automating tasks traditionally prone to human error, RPA significantly reduces defects and variations in the manufacturing process, leading to consistent, high-quality smartphone production. Integrating RPA in quality control ensures adherence to predefined specifications, resulting in uniformity across the product line. This emphasis on maintaining consistency and stringent quality standards enhances consumer confidence in the final product and reduces the likelihood of recalls or warranty issues, ultimately bolstering brand reputation. The focus on quality control and consistency through RPA underscores its crucial role in delivering reliable smartphones and meeting consumer expectations for superior quality and reliability, thereby driving the market forward.

Technological Advancements and Innovation

Technological advancements and innovation serve as the driving force behind the evolution of the Global Robotic Process Automation for Smartphone Manufacturing Market. With rapid progress in AI, machine learning, and robotics, innovative technologies continually reshape the landscape of smartphone manufacturing. These advancements enable the development of more sophisticated RPA systems capable of handling complex tasks and adapting to dynamic production environments. Integrating cutting-edge technologies into RPA enhances its capabilities, facilitating increased precision, speed, and adaptability within manufacturing processes. As new breakthroughs emerge, such as the integration of IoT devices and sensor technology, RPA systems become more interconnected, allowing for real-time data collection and analysis, ultimately optimizing the manufacturing process. Manufacturers leveraging these innovations gain a competitive advantage, meeting the demands for faster, more efficient production while maintaining high standards of quality. Continuous innovation and the incorporation of emerging technologies into RPA not only streamline operations but also drive the industry towards further advancements, setting new benchmarks for the future of smartphone manufacturing. This constant pursuit of innovation and technological progression shapes the RPA landscape, positioning it at the forefront of the ever-evolving smartphone industry.

Key Market Challenges

Integration Complexity and Adaptability

A significant challenge in deploying Robotic Process Automation for Smartphone Manufacturing is integrating these systems into existing manufacturing infrastructure. Manufacturing facilities often have diverse legacy systems, requiring seamless integration with RPA technologies. The main obstacle is ensuring compatibility and adaptability of RPA software and hardware with the current setup. Technological evolution presents an ongoing challenge as manufacturers need RPA systems to adapt to software updates and hardware advancements. Continuous adaptation is crucial to avoid disruptions in manufacturing processes. Therefore, investing in RPA solutions that offer integration capabilities and flexibility to adapt to technological advancements is essential for manufacturers looking to implement these systems smoothly without interfering with established workflows.

Data Security and Privacy Concerns

The implementation of Robotic Process Automation for Smartphone Manufacturing brings forth a significant challenge concerning the management of extensive volumes of sensitive data associated with smartphone designs, production procedures, and consumer information. This influx of data poses a considerable challenge in establishing and maintaining robust security measures aimed at fortifying defenses against potential cyber threats, data breaches, and unauthorized access. Manufacturers are tasked with the critical responsibility of instituting stringent security protocols to safeguard not only their proprietary information and trade secrets but also the highly confidential customer data at risk. The repercussions of any security breach or lapse in protective measures could be profound, impacting both the company and its esteemed customer base. As such, the mandate for manufacturers is clear: comprehensive and unwavering dedication to implementing stringent security measures to shield sensitive information from potential cyber vulnerabilities and protect the trust and integrity of both their business operations and their customers' confidential data.

Skilled Workforce and Training Needs

The integration of Robotic Process Automation (RPA) into Smartphone Manufacturing optimizes various tasks but requires a skilled workforce capable of managing, maintaining, and overseeing these sophisticated systems. Implementing RPA in manufacturing demands proficient professionals who can operate and troubleshoot these complex technologies effectively. As RPA continues to evolve, there's a growing demand for experts well-versed in robotics, automation, and data analysis. Ensuring a capable workforce proficient in handling these evolving technologies while providing necessary training and support poses a consistent challenge for manufacturers. This challenge is heightened by the competitive landscape, making it difficult to attract and retain talent in this specialized and sought-after field. Manufacturers must urgently cultivate and sustain a pool of skilled professionals familiar with RPA intricacies to meet the evolving demands of the smartphone manufacturing industry. This requires dedicated efforts in recruitment and ongoing training to ensure a proficient workforce capable of leveraging the full potential of RPA technologies within the manufacturing environment.

Regulatory Compliance and Standards

Compliance with regulatory standards across diverse regions poses a substantial hurdle for Robotic Process Automation for Smartphone Manufacturing in the realm of smartphone manufacturing. Manufacturers encounter a labyrinth of regulations spanning environmental impact, labor laws, product safety, and data privacy within varied global markets. Meeting these stringent and multifaceted standards requires a vigilant commitment to ensuring that RPA systems and manufacturing processes align with the varied and evolving regulatory landscape. This entails a continuous process of monitoring, adapting, and implementing stringent compliance measures. However, this endeavor can prove to be both resource-intensive and complex. Manufacturers are compelled to remain ever-vigilant, ensuring their RPA systems and manufacturing practices consistently adhere to these evolving regulations. Keeping abreast of the constant changes in regulations is not just a challenge but an absolute necessity for the successful integration of RPA within smartphone manufacturing. This critical aspect demands unwavering attention to detail and an agile approach to ensure ongoing compliance and adherence to the diverse and dynamic regulatory requirements across global markets.

Key Market Trends

Rapid Evolution of AI and Machine Learning Integration

Compliance with regulatory standards is a formidable challenge faced by Robotic Process Automation for Smartphone Manufacturing. Manufacturers grapple with a maze of regulations encompassing environmental impact, labor laws, product safety, and data privacy across diverse global markets. Meeting these rigorous and multifaceted standards necessitates an unwavering commitment to align RPA systems and manufacturing processes with the continually evolving regulatory landscape. This demanding task involves a perpetual cycle of vigilance, adaptation, and the implementation of stringent compliance measures. Yet, navigating this terrain proves to be not only complex but also resource-intensive. Manufacturers find themselves in a perpetual state of watchfulness, ensuring that their RPA systems and manufacturing practices consistently meet the ever-evolving regulatory standards. Staying abreast of these ever-changing regulations is not merely a challenge; it stands as a non-negotiable prerequisite for the successful integration of RPA into smartphone manufacturing. This pivotal facet demands an unswerving dedication to meticulous attention to detail and a nimble approach to maintain ongoing compliance while adhering to the diverse and dynamic regulatory requirements spread across global markets.

Focus on Collaborative Robotics (Cobots)

The adoption of collaborative robotics, known as cobots, is a significant trend in smartphone manufacturing. Unlike traditional industrial robots, cobots work alongside human workers, facilitating a more synergistic and safer manufacturing environment. In smartphone assembly lines, cobots assist in tasks that require dexterity and precision, working alongside human operators. This trend is reshaping the manufacturing landscape by improving efficiency and promoting a safer working environment while maintaining the benefits of automation.

Demand for Flexibility and Scalability in RPA Systems

Manufacturers are showing a growing preference for RPA systems that provide both adaptability and scalability, especially in the dynamic landscape of smartphone design and production. There's an increased need for automation solutions that can easily adapt to changes in product specifications, production volumes, and assembly processes. Manufacturers are seeking scalable systems that can rapidly expand or contract to meet market demands, offering the agility required to navigate shifting consumer preferences and market fluctuations. This focus on adaptable and scalable RPA solutions underscores the necessity for manufacturers to remain responsive and agile in meeting the evolving demands of the smartphone market.

Enhanced Connectivity through IoT Integration

The integration of RPA with the Internet of Things (IoT) is a growing trend in smartphone manufacturing. IoT-enabled devices and sensors collect and transmit real-time data, allowing RPA systems to make informed decisions and adjustments on the production line. This connectivity facilitates predictive maintenance, inventory management, and process optimization. By utilizing IoT in conjunction with RPA, manufacturers can create smarter, more efficient production processes that minimize downtime and enhance overall productivity.

Emphasis on Sustainability and Green Manufacturing

There's a noticeable trend towards sustainability in smartphone manufacturing, driving the adoption of RPA systems that contribute to green initiatives. Manufacturers are incorporating RPA to optimize energy usage, reduce material waste, and enhance recycling processes. RPA enables more precise control over resource allocation, leading to a reduction in environmental impact while ensuring efficient production. This trend aligns with consumer preferences for eco-friendly products and regulatory pressures to reduce the carbon footprint of manufacturing operations.

Segmental Insights

Robot Type Insights

The Global Robotic Process Automation for Smartphone Manufacturing Market was predominantly dominated by the Articulated robots segment and is anticipated to maintain its dominance throughout the forecast period. Articulated robots, known for their versatility and flexibility, found significant application in various stages of smartphone manufacturing. Their multiple jointed arm design, mimicking the flexibility and range of motion of a human arm, made them highly adept at handling diverse tasks within the production line, such as assembling components, testing, and packaging smartphones. These robots are capable of reaching into confined spaces, adapting to various angles, and executing complex movements required in smartphone assembly. Their widespread adoption and proven efficiency in handling intricate tasks in manufacturing operations have solidified their prominence in the smartphone manufacturing landscape. Ongoing advancements in articulation precision and control systems have further reinforced their position, making them integral to the efficient and agile production of smartphones. With their adaptability and continued technological enhancements, articulated robots are expected to maintain their lead, serving as the cornerstone of RPA in smartphone manufacturing during the forecast period.

Organization Size Insights

The large enterprises segment significantly dominated the Global Robotic Process Automation for Smartphone Manufacturing Market and is anticipated to maintain its dominance throughout the forecast period. Large enterprises, with their extensive resources and capacity for substantial investments in advanced technologies, spearheaded the adoption of RPA in smartphone manufacturing. The implementation of RPA systems in large enterprises allowed for comprehensive and integrated automation across the manufacturing processes. These organizations had the financial prowess to deploy sophisticated RPA solutions, enabling them to optimize production, enhance efficiency, and maintain stringent quality standards in smartphone manufacturing. Their ability to allocate substantial budgets for research, development, and implementation of cutting-edge automation technologies gave them a competitive edge. Large enterprises' capability to scale operations and accommodate complex RPA systems across their manufacturing facilities provided a solid foundation for their dominance in the smartphone manufacturing market. As these entities continue to drive innovation and invest in RPA advancements, their leadership in this sector is expected to persist, maintaining their prominent role in shaping the future of smartphone manufacturing.

Regional Insights

The Asia Pacific region emerged as the dominant force in the Global Robotic Process Automation for Smartphone Manufacturing Market, and it is projected to sustain its dominance throughout the forecast period. Asia Pacific's prominence is attributed to the concentration of major smartphone manufacturing hubs, particularly in countries like China, South Korea, Japan, and Taiwan. These regions have become epicenters for high-volume smartphone production due to the presence of established manufacturers and a robust supply chain ecosystem. The region's dominance in RPA for smartphone manufacturing is also fueled by a combination of factors, including technological advancements, substantial investments in automation, and a skilled workforce adept at handling RPA systems. Government initiatives supporting technological innovation and the adoption of automation in manufacturing have further bolstered the region's leadership in this market. As the demand for smartphones continues to surge globally, coupled with the region's infrastructure and expertise in high-tech manufacturing, Asia Pacific is poised to maintain its lead in the RPA for smartphone manufacturing market, driving innovation and setting industry standards throughout the forecast period.

Key Market Players

ABB Ltd.

Fanuc Corporation

KUKA AG

Yaskawa Electric Corporation

Suzhou Elite Robot Co., Ltd.

Kawasaki Heavy Industries Ltd.

Mitsubishi Electric Corporation

Denso Corporation

Comau S.p.A.

Nachi-Fujikoshi Corporation

Report Scope:

In this report, the Global Robotic Process Automation For Smartphone Manufacturing Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Robotic Process Automation For Smartphone Manufacturing Market, By Component:

    Motor Generators Motor Controls Automation Equipment Power Transmission Equipment

Robotic Process Automation For Smartphone Manufacturing Market, By Organization Size:

    Small & Medium Enterprise Large Enterprise

Robotic Process Automation For Smartphone Manufacturing Market, By Robot Type:

    Cartesian SCARA Articulated Delta 6-Axis Robot Redundant Dual Arm and Parallel

Robotic Process Automation For Smartphone Manufacturing Market, By Region:

    North America
    • United States
    • Canada
    • Mexico
    Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
    • Belgium
    Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • Indonesia
    • Vietnam
    South America
    • Brazil
    • Argentina
    • Colombia
    • Chile
    • Peru
    Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Turkey
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Robotic Process Automation For Smartphone Manufacturing Market.

Available Customizations:

Global Robotic Process Automation For Smartphone Manufacturing market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Robotic Process Automation For Smartphone Manufacturing Market

5. Voice of Customer

6. Global Robotic Process Automation For Smartphone Manufacturing Market Overview

7. Global Robotic Process Automation For Smartphone Manufacturing Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Robot Type (Cartesian, SCARA, Articulated, Delta, 6-Axis Robot, Redundant, Dual Arm and Parallel)
    • 7.2.2. By Component (Motor, Generators, Motor Controls, Automation Equipment and Power Transmission Equipment)
    • 7.2.3. By Organization Size (Small & Medium Enterprise and Large Enterprise)
    • 7.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2023)
  • 7.4. Market Map

8. North America Robotic Process Automation For Smartphone Manufacturing Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Robot Type
    • 8.2.2. By Component
    • 8.2.3. By Organization Size
    • 8.2.4. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Robot Type
        • 8.3.1.2.2. By Component
        • 8.3.1.2.3. By Organization Size
    • 8.3.2. Canada Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Robot Type
        • 8.3.2.2.2. By Component
        • 8.3.2.2.3. By Organization Size
    • 8.3.3. Mexico Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Robot Type
        • 8.3.3.2.2. By Component
        • 8.3.3.2.3. By Organization Size

9. Europe Robotic Process Automation For Smartphone Manufacturing Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Robot Type
    • 9.2.2. By Component
    • 9.2.3. By Organization Size
    • 9.2.4. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Robot Type
        • 9.3.1.2.2. By Component
        • 9.3.1.2.3. By Organization Size
    • 9.3.2. France Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Robot Type
        • 9.3.2.2.2. By Component
        • 9.3.2.2.3. By Organization Size
    • 9.3.3. United Kingdom Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Robot Type
        • 9.3.3.2.2. By Component
        • 9.3.3.2.3. By Organization Size
    • 9.3.4. Italy Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Robot Type
        • 9.3.4.2.2. By Component
        • 9.3.4.2.3. By Organization Size
    • 9.3.5. Spain Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Robot Type
        • 9.3.5.2.2. By Component
        • 9.3.5.2.3. By Organization Size
    • 9.3.6. Belgium Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Robot Type
        • 9.3.6.2.2. By Component
        • 9.3.6.2.3. By Organization Size

10. South America Robotic Process Automation For Smartphone Manufacturing Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Robot Type
    • 10.2.2. By Component
    • 10.2.3. By Organization Size
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Robot Type
        • 10.3.1.2.2. By Component
        • 10.3.1.2.3. By Organization Size
    • 10.3.2. Colombia Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Robot Type
        • 10.3.2.2.2. By Component
        • 10.3.2.2.3. By Organization Size
    • 10.3.3. Argentina Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Robot Type
        • 10.3.3.2.2. By Component
        • 10.3.3.2.3. By Organization Size
    • 10.3.4. Chile Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Robot Type
        • 10.3.4.2.2. By Component
        • 10.3.4.2.3. By Organization Size
    • 10.3.5. Peru Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Robot Type
        • 10.3.5.2.2. By Component
        • 10.3.5.2.3. By Organization Size

11. Middle East & Africa Robotic Process Automation For Smartphone Manufacturing Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Robot Type
    • 11.2.2. By Component
    • 11.2.3. By Organization Size
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Robot Type
        • 11.3.1.2.2. By Component
        • 11.3.1.2.3. By Organization Size
    • 11.3.2. UAE Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Robot Type
        • 11.3.2.2.2. By Component
        • 11.3.2.2.3. By Organization Size
    • 11.3.3. South Africa Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Robot Type
        • 11.3.3.2.2. By Component
        • 11.3.3.2.3. By Organization Size
    • 11.3.4. Turkey Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Robot Type
        • 11.3.4.2.2. By Component
        • 11.3.4.2.3. By Organization Size
    • 11.3.5. Israel Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Robot Type
        • 11.3.5.2.2. By Component
        • 11.3.5.2.3. By Organization Size

12. Asia Pacific Robotic Process Automation For Smartphone Manufacturing Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Value
  • 12.2. Market Share & Forecast
    • 12.2.1. By Robot Type
    • 12.2.2. By Component
    • 12.2.3. By Organization Size
    • 12.2.4. By Country
  • 12.3. Asia-Pacific: Country Analysis
    • 12.3.1. China Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.1.1. Market Size & Forecast
        • 12.3.1.1.1. By Value
      • 12.3.1.2. Market Share & Forecast
        • 12.3.1.2.1. By Robot Type
        • 12.3.1.2.2. By Component
        • 12.3.1.2.3. By Organization Size
    • 12.3.2. India Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.2.1. Market Size & Forecast
        • 12.3.2.1.1. By Value
      • 12.3.2.2. Market Share & Forecast
        • 12.3.2.2.1. By Robot Type
        • 12.3.2.2.2. By Component
        • 12.3.2.2.3. By Organization Size
    • 12.3.3. Japan Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.3.1. Market Size & Forecast
        • 12.3.3.1.1. By Value
      • 12.3.3.2. Market Share & Forecast
        • 12.3.3.2.1. By Robot Type
        • 12.3.3.2.2. By Component
        • 12.3.3.2.3. By Organization Size
    • 12.3.4. South Korea Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.4.1. Market Size & Forecast
        • 12.3.4.1.1. By Value
      • 12.3.4.2. Market Share & Forecast
        • 12.3.4.2.1. By Robot Type
        • 12.3.4.2.2. By Component
        • 12.3.4.2.3. By Organization Size
    • 12.3.5. Australia Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.5.1. Market Size & Forecast
        • 12.3.5.1.1. By Value
      • 12.3.5.2. Market Share & Forecast
        • 12.3.5.2.1. By Robot Type
        • 12.3.5.2.2. By Component
        • 12.3.5.2.3. By Organization Size
    • 12.3.6. Indonesia Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.6.1. Market Size & Forecast
        • 12.3.6.1.1. By Value
      • 12.3.6.2. Market Share & Forecast
        • 12.3.6.2.1. By Robot Type
        • 12.3.6.2.2. By Component
        • 12.3.6.2.3. By Organization Size
    • 12.3.7. Vietnam Robotic Process Automation For Smartphone Manufacturing Market Outlook
      • 12.3.7.1. Market Size & Forecast
        • 12.3.7.1.1. By Value
      • 12.3.7.2. Market Share & Forecast
        • 12.3.7.2.1. By Robot Type
        • 12.3.7.2.2. By Component
        • 12.3.7.2.3. By Organization Size

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. ABB Ltd.
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Fanuc Corporation
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. KUKA AG
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Yaskawa Electric Corporation
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. Suzhou Elite Robot Co., Ltd.
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Kawasaki Heavy Industries Ltd.
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. Mitsubishi Electric Corporation
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Denso Corporation
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. Comau S.p.A.
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Nachi-Fujikoshi Corporation
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer