封面
市场调查报告书
商品编码
1586628

固体生物质原料市场 - 全球产业规模、份额、趋势、机会和预测,按类型、来源、最终用户、地区和竞争细分,2019-2029F

Solid Biomass Feedstock Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Source, By End-User, By Region and Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 183 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023年全球固体生物质原料市场价值为272.3亿美元,预计2029年将达到382.7亿美元,预测期内复合年增长率为6.01%。

市场概况
预测期 2025-2029
2023 年市场规模 272.3亿美元
2029 年市场规模 382.7亿美元
2024-2029 年复合年增长率 6.01%
成长最快的细分市场 颗粒
最大的市场 北美洲

由于对再生能源的需求不断增长以及全球向减少碳排放的转变,全球固体生物质原料市场正在经历显着增长。固体生物质原料包括木材、农业残留物和有机废弃物等材料,是生物能源和生物燃料生产的重要组成部分。根据美国能源情报署的数据,2023 年生物质约占美国能源消耗总量的 5%,总计约 4,978 兆英热单位 (TBtu)。 2023年生质能源消耗类型及占例如下:生物燃料2,662 TBtu,占53%;木材和木材废料贡献了 1,918 TBtu,即 39%;都市固体废弃物、动物粪便和污水占398 TBtu,占8%。认识不断提高。推动固体生物质原料需求的关键产业包括发电、住宅供暖和工业应用。发电厂越来越多地将生物质作为与煤炭混烧的解决方案,以减少温室气体排放,而工业界则将其用于热电联产(CHP)系统。住宅领域,特别是在气候寒冷的地区,依赖固体生物质来提供暖气解决方案,进一步推动市场扩张。

然而,诸如提供一致且具有成本效益的原料、土地使用问题以及与粮食作物对农业残留物的竞争等挑战对市场成长构成了障碍。生物质资源和监管框架的区域差异影响着市场的动态,其中欧洲和北美在采用方面领先,而亚太地区由于其庞大的农业基础而正在成为关键成长区域。生物质加工和转化方法的技术进步预计将在未来提高效率和可扩展性。随着世界对再生能源的关注日益加强,全球固体生物质原料市场在其支持能源安全和环境永续性的潜力的推动下将持续扩张。

主要市场驱动因素

再生能源需求不断成长

增加生质能发电的采用

日益严重的环境问题和碳中和目标

主要市场挑战

供应炼与原料供应问题

与粮食和土地资源的竞争

主要市场趋势

生物燃料产业的成长

能源安全与农村经济发展

细分市场洞察

类型洞察

来源洞察

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球固体生物质原料市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型(木片、颗粒、煤球、其他)
    • 依来源分类(农业废弃物、森林废弃物、动物废弃物、都市废弃物)
    • 按最终用户(住宅和商业、工业、公用事业)
    • 按公司划分 (2023)
    • 按地区
  • 市场地图

第 6 章:北美固体生物质原料市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按来源
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 7 章:欧洲固体生物质原料市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按来源
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 欧洲:国家分析
    • 法国
    • 德国
    • 英国
    • 义大利
    • 西班牙

第 8 章:亚太地区固体生物质原料市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按来源
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 韩国
    • 日本
    • 澳洲

第 9 章:南美洲固体生物质原料市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按来源
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第 10 章:中东和非洲固体生物质原料市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按类型
    • 按来源
    • 按最终用户
    • 按国家/地区
  • 定价分析
  • MEA:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:市场动态

  • 司机
  • 挑战

第 12 章:市场趋势与发展

  • 併购(如有)
  • 产品发布(如有)
  • 最新动态

第 13 章:波特五力分析

  • 产业竞争
  • 新进入者的潜力
  • 供应商的力量
  • 客户的力量
  • 替代产品的威胁

第 14 章:全球固体生物质原料市场:SWOT 分析

第15章:竞争格局

  • Arbaflame AS
  • Enviva Inc.
  • DRAX GROUP PLC
  • Segezha Group
  • Ecostrat Inc.
  • Stora Enso Oyj
  • Rentechinc
  • Lignetics Group
  • The Supreme Industries Limited
  • LEAG Group

第 16 章:策略建议

第17章调查会社について・免责事项

简介目录
Product Code: 25477

Global Solid Biomass Feedstock Market was valued at USD 27.23 Billion in 2023 and is expected to reach USD 38.27 Billion by 2029 with a CAGR of 6.01% during the forecast period.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 27.23 Billion
Market Size 2029USD 38.27 Billion
CAGR 2024-20296.01%
Fastest Growing SegmentPellets
Largest MarketNorth America

The Global Solid Biomass Feedstock Market is experiencing significant growth, driven by the increasing demand for renewable energy sources and the global shift toward reducing carbon emissions. Solid biomass feedstock, which includes materials such as wood, agricultural residues, and organic waste, serves as a crucial component in the production of bioenergy and biofuels. According to the U.S. Energy Information Administration, biomass represented approximately 5% of total U.S. energy consumption in 2023, amounting to around 4,978 trillion British thermal units (TBtu). The breakdown of biomass energy consumption by type and their respective shares in 2023 was as follows: biofuels constituted 2,662 TBtu, accounting for 53%; wood and wood waste contributed 1,918 TBtu, or 39%; while municipal solid waste, animal manure, and sewage comprised 398 TBtu, making up 8%.This market's growth is fueled by government policies and incentives aimed at promoting sustainable energy practices, along with rising awareness of the environmental benefits of biomass over fossil fuels. Key sectors driving the demand for solid biomass feedstock include power generation, residential heating, and industrial applications. Power plants are increasingly incorporating biomass as a co-firing solution with coal to reduce greenhouse gas emissions, while industries are using it for combined heat and power (CHP) systems. The residential sector, especially in regions with colder climates, relies on solid biomass for heating solutions, further propelling market expansion.

However, challenges such as the availability of consistent and cost-effective feedstock, land-use concerns, and competition with food crops for agricultural residues pose obstacles to market growth. Regional variations in biomass resources and regulatory frameworks influence the market's dynamics, with Europe and North America leading in adoption, while Asia-Pacific is emerging as a key growth region due to its vast agricultural base. Technological advancements in biomass processing and conversion methods are expected to enhance efficiency and scalability in the future. As the world intensifies its focus on renewable energy, the Global Solid Biomass Feedstock Market is positioned for continued expansion, driven by its potential to support energy security and environmental sustainability.

Key Market Drivers

Growing Demand for Renewable Energy

The growing demand for renewable energy is a crucial factor driving the expansion of the solid biomass feedstock market. As nations around the world work to reduce their dependency on fossil fuels and cut down carbon emissions, the transition to renewable energy has become a global priority. Governments and organizations are adopting policies that actively promote renewable energy development, making solid biomass feedstock an attractive alternative. Derived from organic materials such as wood, agricultural residues, and waste, solid biomass offers a sustainable and carbon-neutral energy source. Unlike traditional fossil fuels like coal and natural gas, biomass provides an opportunity to generate power and heat with minimal environmental impact, making it an integral component of many countries' renewable energy strategies.

Several countries have set ambitious renewable energy targets, and biomass is playing a vital role in achieving those goals. Similarly, countries in North America, Asia, and other regions are also investing in biomass as part of their energy transition strategies. The demand for solid biomass feedstock is expected to rise significantly, especially as decarbonization efforts accelerate and coal is phased out in power generation. For instance, According to the U.S. Energy Information Administration, the industrial sector emerged as the largest consumer of biomass for energy in the United States in 2023, highlighting its critical role in the biomass energy market. The distribution of total U.S. biomass energy consumption by sector, measured in trillion British thermal units (TBtu), underscores the market dynamics: industrial usage accounted for 2,225 TBtu, representing 45% of total consumption; transportation utilized 1,788 TBtu, or 36%; residential consumption totaled 450 TBtu, equating to 9%; electric power generation consumed 329 TBtu, comprising 7%; and the commercial sector accounted for 185 TBtu, or 4%. This segmentation illustrates the diverse applications of biomass energy and emphasizes the industrial sector's significant market share, reflecting its dependence on renewable energy sources for operational efficiency and sustainability. In addition to policy support, financial incentives and subsidies are bolstering the growth of the solid biomass feedstock market. Advancements in biomass processing and conversion technologies are enhancing its efficiency and cost-effectiveness, making it an even more viable option for energy producers. These innovations have improved the ability of biomass to compete with other renewable energy sources such as solar and wind, contributing to its growing adoption worldwide. As the global focus on renewable energy intensifies, the demand for solid biomass feedstock will continue to surge.

Increased Adoption of Biomass in Power Generation

The increased adoption of biomass in power generation is a key driver of the global solid biomass feedstock market. Biomass offers a flexible and sustainable solution for reducing greenhouse gas emissions in the energy sector, as it can be co-fired with coal in power plants. This process, known as biomass co-firing, enables power plants to incorporate renewable energy without significant infrastructural changes, making it a cost-effective approach for transitioning away from fossil fuels. By integrating biomass into their operations, power plants can reduce their carbon footprint while maintaining consistent energy production, making it an attractive option for energy producers.

In addition to co-firing, dedicated biomass power plants are becoming more prevalent, especially in regions rich in biomass resources. These plants use solid biomass feedstock, such as wood pellets, agricultural residues, and waste materials, to generate electricity and heat. Technologies like combustion and gasification convert the biomass into energy, and the growing interest in advanced biomass conversion technologies is further driving market expansion. Combined Heat and Power (CHP) systems, which simultaneously generate electricity and thermal energy, are also contributing to increased biomass adoption. CHP systems are particularly valuable in industrial applications, where both electricity and heat are required, boosting the demand for solid biomass feedstock.

Countries with abundant biomass resources, such as the United States, Canada, and Brazil, are experiencing a surge in biomass power generation projects. Government support, in the form of subsidies, tax incentives, and renewable energy mandates, is fueling this growth. Private investments in biomass infrastructure and technology are accelerating the development of new projects. Unlike intermittent renewable energy sources like wind and solar, biomass can provide baseload power, ensuring a steady supply of energy. This reliability makes biomass a crucial component of the global energy mix, and as countries aim to diversify their energy sources, the demand for solid biomass feedstock in power generation continues to rise.

Rising Environmental Concerns and Carbon Neutrality Goals

Rising environmental concerns and the global push towards carbon neutrality are significant drivers for the growth of the solid biomass feedstock market. As the impact of climate change becomes more evident, governments, industries, and individuals are increasingly focusing on reducing greenhouse gas emissions to mitigate global warming. Biomass stands out as a carbon-neutral energy source, as the carbon dioxide (CO2) released during its combustion is balanced by the CO2 absorbed by plants during their growth cycle. This natural balance makes biomass an appealing option for countries and companies striving to meet their carbon reduction goals.

Many governments have set ambitious carbon neutrality targets, with policies and regulations encouraging the use of renewable energy sources like biomass. In response, industries-especially those in energy-intensive sectors such as manufacturing, transportation, and construction-are turning to biomass to decrease their carbon emissions and comply with stricter environmental standards. Biomass offers these industries a practical and sustainable solution, enabling them to transition away from fossil fuels and reduce their reliance on coal and natural gas without compromising energy output. Solid biomass feedstock is not only gaining popularity in power generation but also in biofuel production, particularly in the transportation sector. As the demand for cleaner transportation fuels rises, biofuels derived from solid biomass provide a viable alternative to petroleum-based fuels. The adoption of biofuels, including bioethanol and biodiesel, is seen as a key strategy for reducing the carbon footprint of the transportation industry, which accounts for a significant portion of global emissions.

The push for cleaner energy sources is further fueled by growing consumer awareness and corporate commitments to sustainability. Many companies are adopting Environmental, Social, and Governance (ESG) goals that prioritize carbon reduction, driving investments in renewable energy like biomass. As the urgency to combat climate change intensifies, the demand for solid biomass feedstock is expected to rise, reinforcing its role as a critical component in the transition to a low-carbon economy.

Key Market Challenges

Supply Chain and Feedstock Availability Issues

One of the major challenges facing the Global Solid Biomass Feedstock Market is the complexity of maintaining a reliable and consistent supply chain for feedstock. Solid biomass feedstock is derived from a variety of sources, including agricultural residues, forestry waste, and organic materials. However, the availability and accessibility of these materials can be highly variable, depending on geographic location, seasonal conditions, and local land-use policies. For example, agricultural residues like straw and corn stover are harvested at specific times of the year, leading to potential shortages or oversupply in different seasons. This variability makes it difficult for energy producers to secure a consistent supply of biomass, which in turn impacts the efficiency and scalability of biomass energy projects.

The transportation of biomass feedstock from rural or remote areas to power plants or processing facilities poses logistical challenges. Biomass is typically bulky and has a lower energy density compared to fossil fuels, which increases transportation costs and requires specialized storage facilities to prevent degradation. This can make biomass energy projects less economically viable, especially in regions with poor infrastructure. The cost and complexity of the biomass supply chain are significant barriers to the wider adoption of biomass energy, and they require coordinated efforts from stakeholders across the value chain, including farmers, transport providers, and energy producers.

Competition with Food and Land Resources

Another significant challenge for the Global Solid Biomass Feedstock Market is the competition between biomass production and food security, as well as the potential impact on land resources. The use of agricultural land for growing biomass feedstock, such as energy crops like switchgrass or miscanthus, can conflict with food production, especially in regions where land is scarce or agricultural resources are already stretched. This creates a "food vs. fuel" debate, where the allocation of land for energy production is questioned, particularly in developing countries where food security remains a critical issue.

The expansion of biomass production can lead to deforestation and other forms of land-use change, which may undermine the environmental benefits of using biomass as a renewable energy source. Deforestation not only contributes to the loss of biodiversity but also releases carbon stored in trees and soil, potentially negating the carbon-neutral claims of biomass energy. The demand for agricultural residues, such as crop waste, may also impact soil health if not managed sustainably. These residues are often left on the field to provide nutrients to the soil and prevent erosion. Excessive removal of these materials for biomass production can lead to soil degradation and reduced agricultural productivity in the long term. Addressing these challenges requires careful planning and the implementation of sustainable land management practices to balance the needs of energy production, food security, and environmental conservation.

Key Market Trends

Growth of the Biofuel Industry

The rapid growth of the biofuel industry is playing a pivotal role in the expansion of the solid biomass feedstock market. Solid biomass, including agricultural residues, wood chips, and other organic materials, is crucial for the production of second-generation biofuels. Unlike first-generation biofuels, which are derived from food crops, second-generation biofuels are produced from non-food biomass materials, making them a more sustainable option. This shift towards more sustainable biofuels is particularly important in the transportation sector, where bioethanol and biodiesel are increasingly being adopted as alternatives to traditional fossil fuels like gasoline and diesel. Biofuel blending mandates introduced by many governments are a key factor driving demand for biomass-based feedstocks. These mandates require a certain percentage of biofuels to be blended with conventional fuels, creating a strong and sustained demand for biomass. For example, countries like the United States and Brazil have implemented policies that promote biofuel use, particularly through ethanol-blended gasoline (E10, E15, or higher blends) and biodiesel (B5, B10, etc.). These blending requirements help reduce greenhouse gas emissions while promoting energy security and decreasing dependence on imported fossil fuels.

In addition to regulatory support, government incentives, research, and development initiatives are fostering the growth of the biofuel industry. Many governments are offering subsidies, tax credits, and grants to biofuel producers and farmers supplying biomass, further enhancing the attractiveness of biofuels as a renewable energy source. These measures are encouraging investment in biofuel production facilities, creating a positive feedback loop that increases demand for solid biomass feedstock. Technological advancements in biofuel production are also contributing to this growth. Innovations in conversion technologies, such as enzymatic hydrolysis, gasification, and advanced fermentation processes, are making it more efficient to convert biomass into high-energy biofuels. This improved efficiency not only reduces production costs but also increases the overall energy yield, making biofuels a more competitive option in the global energy market.

Energy Security and Rural Economic Development

Solid biomass feedstock plays a vital role in enhancing energy security, especially for countries aiming to reduce their reliance on imported fossil fuels. By utilizing locally sourced biomass, nations can diversify their energy portfolios and lessen their dependence on volatile global energy markets. This strategy is particularly advantageous for developing countries and regions with abundant agricultural and forestry resources, where biomass provides a reliable, renewable alternative to fossil fuels. By tapping into these local resources, countries can stabilize their energy supplies, reduce exposure to price shocks, and foster greater energy independence. In addition to boosting energy security, the growth of the solid biomass feedstock market has significant economic benefits, particularly in rural areas. Rural regions, often rich in biomass resources like agricultural residues, wood chips, and forest waste, stand to benefit greatly from the expansion of the biomass industry. The demand for solid biomass creates jobs in various sectors, including biomass collection, processing, and transportation. These activities provide new employment opportunities, particularly in regions where traditional job markets may be limited. Farmers, foresters, and landowners who supply biomass feedstock gain access to additional income streams, turning what was once considered waste into a valuable resource.

Rural areas with limited access to conventional energy sources are increasingly adopting biomass as a dependable and affordable energy solution. Biomass power generation projects in such areas can deliver electricity and heat, enhancing the quality of life for residents while reducing their dependency on expensive and less sustainable energy imports. The local production and consumption of biomass energy also keep energy costs down, making it a more feasible option for communities with limited financial resources. The development of biomass energy projects often stimulates rural economies by attracting investments and creating local supply chains. As the solid biomass feedstock market continues to grow, it not only meets the energy needs of countries but also contributes to sustainable economic development, providing a long-term, environmentally friendly solution for rural communities across the globe.

Segmental Insights

Type Insights

Based on the Type, In the Global Solid Biomass Feedstock Market, pellets are currently the dominating segment due to their superior characteristics and advantages over other forms such as chips and briquettes. Biomass pellets are produced by compressing biomass materials, which results in a dense and uniform product that offers several benefits. Their higher energy density allows for more efficient storage and transportation compared to chips, making them an attractive option for both energy producers and consumers.

Pellets are designed to provide consistent combustion properties, leading to higher efficiency and lower emissions during energy production. This consistency is crucial for industrial applications, particularly in power generation and heating systems, where uniform fuel quality is essential for optimizing performance. The use of pellets minimizes the issues associated with moisture content and variability typically found in chips, enhancing reliability in biomass energy production. The growing demand for sustainable energy sources and government policies promoting renewable energy further bolster the appeal of pellets. With the rising popularity of biomass heating systems in residential and commercial sectors, the market for wood pellets, in particular, has seen significant growth. Technological advancements in pellet production and distribution have made this segment more accessible and cost-effective, further solidifying its dominance in the biomass feedstock market.

Source Insights

Based on the Source, In the Global Solid Biomass Feedstock Market, agricultural waste is the dominating segment, primarily due to its abundant availability and diverse sources. Agricultural waste encompasses a wide range of materials, including crop residues such as straw, corn stover, and sugarcane bagasse, which are produced in large quantities during farming activities. This sector benefits from the global push toward sustainable practices, as utilizing agricultural waste for biomass energy helps manage waste effectively while providing an alternative source of renewable energy.

The high volume of agricultural production, particularly in countries with extensive farming activities, ensures a steady supply of feedstock for biomass conversion. This availability positions agricultural waste as a reliable and cost-effective resource for biomass energy production. The conversion of agricultural waste into energy supports the circular economy by turning waste into valuable resources, thereby enhancing the overall sustainability of agricultural practices. Technological advancements in biomass processing have improved the efficiency of converting agricultural residues into energy, making this segment increasingly attractive for energy producers. Governments and industries are actively promoting the use of agricultural waste for bioenergy through various incentives and support programs, further driving market growth.

Regional Insights

North America, region is currently dominating the Global Solid Biomass Feedstock Market, primarily due to its vast agricultural resources, advanced biomass processing technologies, and supportive government policies promoting renewable energy. The United States and Canada have established themselves as leaders in biomass energy production, leveraging abundant agricultural residues, forestry by-products, and dedicated energy crops. In the U.S., significant investments in biomass power plants and combined heat and power (CHP) systems have bolstered the demand for solid biomass feedstock. The region's established infrastructure for harvesting, processing, and distributing biomass fuels contributes to the efficient supply chain necessary for sustained market growth. North America's robust research and development efforts focus on enhancing biomass conversion technologies, which further increase the viability and competitiveness of solid biomass as an energy source.

Government incentives, such as tax credits and grants, coupled with state-level renewable portfolio standards, encourage both private and public sector investments in biomass energy projects. This supportive regulatory environment fosters a favorable landscape for biomass utilization, making it an integral part of the region's renewable energy strategy. Rising awareness of climate change and the urgent need to transition to sustainable energy solutions have prompted various industries in North America to incorporate biomass into their energy mix, further solidifying its dominance in the global market.

Key Market Players

  • Arbaflame AS
  • Enviva Inc.
  • DRAX GROUP PLC
  • Segezha Group
  • Ecostrat Inc.
  • Stora Enso Oyj
  • Rentechinc
  • Lignetics Group
  • The Supreme Industries Limited
  • LEAG Group

Report Scope:

In this report, the Global Solid Biomass Feedstock Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Solid Biomass Feedstock Market, By Type:

  • Chips
  • Pellets
  • Briquettes
  • Others

Solid Biomass Feedstock Market, By Source:

  • Agriculture Waste
  • Forest Waste
  • Animal Waste
  • Municipal Waste

Solid Biomass Feedstock Market, By End User:

  • Residential & Commercial
  • Industrial
  • Utilities

Solid Biomass Feedstock Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Solid Biomass Feedstock Market.

Available Customizations:

Global Solid Biomass Feedstock Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Solid Biomass Feedstock Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Chips, Pellets, Briquettes, Others)
    • 5.2.2. By Source (Agriculture Waste, Forest Waste, Animal Waste, Municipal Waste)
    • 5.2.3. By End-User (Residential & Commercial, Industrial, Utilities)
    • 5.2.4. By Company (2023)
    • 5.2.5. By Region
  • 5.3. Market Map

6. North America Solid Biomass Feedstock Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Source
    • 6.2.3. By End-User
    • 6.2.4. By Country
  • 6.3. Pricing Analysis
  • 6.4. North America: Country Analysis
    • 6.4.1. United States Solid Biomass Feedstock Market Outlook
      • 6.4.1.1. Market Size & Forecast
        • 6.4.1.1.1. By Value
      • 6.4.1.2. Market Share & Forecast
        • 6.4.1.2.1. By Type
        • 6.4.1.2.2. By Source
        • 6.4.1.2.3. By End-User
    • 6.4.2. Mexico Solid Biomass Feedstock Market Outlook
      • 6.4.2.1. Market Size & Forecast
        • 6.4.2.1.1. By Value
      • 6.4.2.2. Market Share & Forecast
        • 6.4.2.2.1. By Type
        • 6.4.2.2.2. By Source
        • 6.4.2.2.3. By End-User
    • 6.4.3. Canada Solid Biomass Feedstock Market Outlook
      • 6.4.3.1. Market Size & Forecast
        • 6.4.3.1.1. By Value
      • 6.4.3.2. Market Share & Forecast
        • 6.4.3.2.1. By Type
        • 6.4.3.2.2. By Source
        • 6.4.3.2.3. By End-User

7. Europe Solid Biomass Feedstock Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Source
    • 7.2.3. By End-User
    • 7.2.4. By Country
  • 7.3. Pricing Analysis
  • 7.4. Europe: Country Analysis
    • 7.4.1. France Solid Biomass Feedstock Market Outlook
      • 7.4.1.1. Market Size & Forecast
        • 7.4.1.1.1. By Value
      • 7.4.1.2. Market Share & Forecast
        • 7.4.1.2.1. By Type
        • 7.4.1.2.2. By Source
        • 7.4.1.2.3. By End-User
    • 7.4.2. Germany Solid Biomass Feedstock Market Outlook
      • 7.4.2.1. Market Size & Forecast
        • 7.4.2.1.1. By Value
      • 7.4.2.2. Market Share & Forecast
        • 7.4.2.2.1. By Type
        • 7.4.2.2.2. By Source
        • 7.4.2.2.3. By End-User
    • 7.4.3. United Kingdom Solid Biomass Feedstock Market Outlook
      • 7.4.3.1. Market Size & Forecast
        • 7.4.3.1.1. By Value
      • 7.4.3.2. Market Share & Forecast
        • 7.4.3.2.1. By Type
        • 7.4.3.2.2. By Source
        • 7.4.3.2.3. By End-User
    • 7.4.4. Italy Solid Biomass Feedstock Market Outlook
      • 7.4.4.1. Market Size & Forecast
        • 7.4.4.1.1. By Value
      • 7.4.4.2. Market Share & Forecast
        • 7.4.4.2.1. By Type
        • 7.4.4.2.2. By Source
        • 7.4.4.2.3. By End-User
    • 7.4.5. Spain Solid Biomass Feedstock Market Outlook
      • 7.4.5.1. Market Size & Forecast
        • 7.4.5.1.1. By Value
      • 7.4.5.2. Market Share & Forecast
        • 7.4.5.2.1. By Type
        • 7.4.5.2.2. By Source
        • 7.4.5.2.3. By End-User

8. Asia-Pacific Solid Biomass Feedstock Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Source
    • 8.2.3. By End-User
    • 8.2.4. By Country
  • 8.3. Pricing Analysis
  • 8.4. Asia-Pacific: Country Analysis
    • 8.4.1. China Solid Biomass Feedstock Market Outlook
      • 8.4.1.1. Market Size & Forecast
        • 8.4.1.1.1. By Value
      • 8.4.1.2. Market Share & Forecast
        • 8.4.1.2.1. By Type
        • 8.4.1.2.2. By Source
        • 8.4.1.2.3. By End-User
    • 8.4.2. India Solid Biomass Feedstock Market Outlook
      • 8.4.2.1. Market Size & Forecast
        • 8.4.2.1.1. By Value
      • 8.4.2.2. Market Share & Forecast
        • 8.4.2.2.1. By Type
        • 8.4.2.2.2. By Source
        • 8.4.2.2.3. By End-User
    • 8.4.3. South Korea Solid Biomass Feedstock Market Outlook
      • 8.4.3.1. Market Size & Forecast
        • 8.4.3.1.1. By Value
      • 8.4.3.2. Market Share & Forecast
        • 8.4.3.2.1. By Type
        • 8.4.3.2.2. By Source
        • 8.4.3.2.3. By End-User
    • 8.4.4. Japan Solid Biomass Feedstock Market Outlook
      • 8.4.4.1. Market Size & Forecast
        • 8.4.4.1.1. By Value
      • 8.4.4.2. Market Share & Forecast
        • 8.4.4.2.1. By Type
        • 8.4.4.2.2. By Source
        • 8.4.4.2.3. By End-User
    • 8.4.5. Australia Solid Biomass Feedstock Market Outlook
      • 8.4.5.1. Market Size & Forecast
        • 8.4.5.1.1. By Value
      • 8.4.5.2. Market Share & Forecast
        • 8.4.5.2.1. By Type
        • 8.4.5.2.2. By Source
        • 8.4.5.2.3. By End-User

9. South America Solid Biomass Feedstock Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Source
    • 9.2.3. By End-User
    • 9.2.4. By Country
  • 9.3. Pricing Analysis
  • 9.4. South America: Country Analysis
    • 9.4.1. Brazil Solid Biomass Feedstock Market Outlook
      • 9.4.1.1. Market Size & Forecast
        • 9.4.1.1.1. By Value
      • 9.4.1.2. Market Share & Forecast
        • 9.4.1.2.1. By Type
        • 9.4.1.2.2. By Source
        • 9.4.1.2.3. By End-User
    • 9.4.2. Argentina Solid Biomass Feedstock Market Outlook
      • 9.4.2.1. Market Size & Forecast
        • 9.4.2.1.1. By Value
      • 9.4.2.2. Market Share & Forecast
        • 9.4.2.2.1. By Type
        • 9.4.2.2.2. By Source
        • 9.4.2.2.3. By End-User
    • 9.4.3. Colombia Solid Biomass Feedstock Market Outlook
      • 9.4.3.1. Market Size & Forecast
        • 9.4.3.1.1. By Value
      • 9.4.3.2. Market Share & Forecast
        • 9.4.3.2.1. By Type
        • 9.4.3.2.2. By Source
        • 9.4.3.2.3. By End-User

10. Middle East and Africa Solid Biomass Feedstock Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Source
    • 10.2.3. By End-User
    • 10.2.4. By Country
  • 10.3. Pricing Analysis
  • 10.4. MEA: Country Analysis
    • 10.4.1. South Africa Solid Biomass Feedstock Market Outlook
      • 10.4.1.1. Market Size & Forecast
        • 10.4.1.1.1. By Value
      • 10.4.1.2. Market Share & Forecast
        • 10.4.1.2.1. By Type
        • 10.4.1.2.2. By Source
        • 10.4.1.2.3. By End-User
    • 10.4.2. Saudi Arabia Solid Biomass Feedstock Market Outlook
      • 10.4.2.1. Market Size & Forecast
        • 10.4.2.1.1. By Value
      • 10.4.2.2. Market Share & Forecast
        • 10.4.2.2.1. By Type
        • 10.4.2.2.2. By Source
        • 10.4.2.2.3. By End-User
    • 10.4.3. UAE Solid Biomass Feedstock Market Outlook
      • 10.4.3.1. Market Size & Forecast
        • 10.4.3.1.1. By Value
      • 10.4.3.2. Market Share & Forecast
        • 10.4.3.2.1. By Type
        • 10.4.3.2.2. By Source
        • 10.4.3.2.3. By End-User

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Global Solid Biomass Feedstock Market: SWOT Analysis

15. Competitive Landscape

  • 15.1. Arbaflame AS
    • 15.1.1. Business Overview
    • 15.1.2. Company Snapshot
    • 15.1.3. Products & Services
    • 15.1.4. Financials (As Reported)
    • 15.1.5. Recent Developments
    • 15.1.6. Key Personnel Details
    • 15.1.7. SWOT Analysis
  • 15.2. Enviva Inc.
  • 15.3. DRAX GROUP PLC
  • 15.4. Segezha Group
  • 15.5. Ecostrat Inc.
  • 15.6. Stora Enso Oyj
  • 15.7. Rentechinc
  • 15.8. Lignetics Group
  • 15.9. The Supreme Industries Limited
  • 15.10. LEAG Group

16. Strategic Recommendations

17. About Us & Disclaimer