封面
市场调查报告书
商品编码
1601813

乘用车热系统市场 - 全球产业规模、份额、趋势机会和预测,按车辆类型、应用、推进、地区和竞争细分,2019-2029F

Passenger Car Thermal System Market - Global Industry Size, Share, Trends Opportunity, and Forecast, Segmented By Vehicle Type, By Application, By Propulsion, By Region & Competition, 2019-2029F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2023年全球乘用车热系统市值为451.4亿美元,预计2029年将达654.1亿美元,预测期内复合年增长率为6.44%。全球乘用车热系统市场是汽车产业的重要组成部分,其任务是调节乘用车的温度和热性能。这些系统是多方面的,管理引擎冷却、驾驶室舒适度以及现代汽车关键部件的热调节。

市场概况
预测期 2025-2029
2023 年市场规模 451.4亿美元
2029 年市场规模 654.1亿美元
2024-2029 年复合年增长率 6.44%
成长最快的细分市场 SUV
最大的市场 亚太

乘用车热系统的主要作用是引擎冷却。这是透过散热器、冷却风扇和冷却液泵等组件实现的,这些组件确保引擎在最佳温度范围内运行。适当的引擎冷却可促进高效燃烧、减少排放并延长引擎寿命。随着排放法规的日益严格,有效的热管理对于汽车製造商在保持性能的同时满足环境标准至关重要。

客舱舒适度是这些系统的另一个关键功能。暖气、通风和空调 (HVAC) 系统对于营造宜人的客舱环境至关重要。它们在寒冷天气提供加热,在炎热条件下提供冷却,提高乘客的舒适度。环保冷媒和节能压缩机等暖通空调技术的进步有助于降低车辆运作对环境的影响。

在电动和混合动力汽车(EV 和 HEV)中,热系统变得更加重要。电池热管理系统对于调节锂离子电池的温度至关重要,锂离子电池是这些车辆的核心。有效管理电池温度可确保安全、延长电池寿命并优化行驶里程。液体冷却、相变材料和先进绝缘等技术解决了电动传动系统的独特热挑战。

透过防止过热并确保可靠的车辆性能,热系统在维持各种零件(包括变速箱、动力总成和排气系统)的功能方面也发挥关键作用。

乘用车热系统的未来越来越受到永续性和环境问题的影响。製造商专注于环保解决方案,例如减少能源消耗的轻质材料、再生能源整合以及旨在最大限度减少碳足迹的系统。

全球乘用车热系统市场对于提高引擎性能、乘客舒适度和环境永续性至关重要。随着汽车产业的发展,这些系统将继续解决与电动车、排放法规以及提高舒适度和环境责任的需求相关的挑战。

主要市场驱动因素

电动车 (EV) 需求不断增长

严格的排放法规

消费者关注客舱舒适度

电池技术的进步

不断发展的都市化

技术创新

政府对永续交通的支持

环境永续发展

主要市场挑战

减排目标

电气化转型

电池范围和充电基础设施

成本限制

消费者期望

极端天气条件

全球供应链中断

与自动驾驶集成

主要市场趋势

电气化重点

永续解决方案

先进的暖通空调

智慧热系统

高效的废气管理

自动驾驶汽车的热舒适性

模组化热系统

再生能源併网

细分市场洞察

车辆类型洞察

区域洞察

目录

第 1 章:简介

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:COVID-19 对全球乘用车热系统市场的影响

第 5 章:全球乘用车热系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按车型(SUV、MUV、轿车、掀背车)
    • 依应用(HVAC、动力系统冷却、流体传输、其他)
    • 按推进力(内燃机汽车、电动车和混合动力车)
    • 按地区划分
    • 按公司划分(前 5 名公司,其他 - 按价值,2023 年)
  • 全球乘用车热系统市场地图与机会评估
    • 按车型分类
    • 按申请
    • 透过推进
    • 按地区划分

第 6 章:亚太地区乘用车热系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按车型分类
    • 按申请
    • 透过推进
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 印尼
    • 泰国
    • 韩国
    • 澳洲

第 7 章:欧洲与独联体国家乘用车热系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按车型分类
    • 按申请
    • 透过推进
    • 按国家/地区
  • 欧洲与独联体:国家分析
    • 德国
    • 西班牙
    • 法国
    • 俄罗斯
    • 义大利
    • 英国
    • 比利时

第 8 章:北美乘用车热系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按车型分类
    • 按申请
    • 透过推进
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 墨西哥
    • 加拿大

第 9 章:南美洲乘用车热系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按车型分类
    • 按申请
    • 透过推进
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷

第 10 章:中东和非洲乘用车热系统市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按车型分类
    • 按申请
    • 透过推进
    • 按国家/地区
  • 中东和非洲:国家分析
    • 土耳其
    • 伊朗
    • 沙乌地阿拉伯
    • 阿联酋

第 11 章:SWOT 分析

  • 力量
  • 弱点
  • 机会
  • 威胁

第 12 章:市场动态

  • 市场驱动因素
  • 市场挑战

第 13 章:市场趋势与发展

第14章:竞争格局

  • 公司简介(最多10家主要公司)
    • Robert Bosch GmbH
    • Dana Incorporated
    • MAHLE GmbH
    • Gentherm Inc
    • Hanon Systems
    • Denso Corporation
    • BorgWarner Inc
    • Continental AG
    • Modine Manufacturing Company
    • Schaeffler AG.

第 15 章:策略建议

  • 重点关注领域
    • 目标地区
    • 目标车辆类型
    • 目标推进

第16章调查会社について・免责事项

简介目录
Product Code: 19319

Global Passenger Car Thermal System Market was valued at USD 45.14 Billion in 2023 and is expected to reach USD 65.41 Billion by 2029 with a CAGR of 6.44% during the forecast period. The Global Passenger Car Thermal System Market is a crucial segment of the automotive industry, tasked with regulating temperature and thermal performance in passenger vehicles. These systems are multifaceted, managing engine cooling, cabin comfort, and the thermal regulation of key components in modern cars.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 45.14 Billion
Market Size 2029USD 65.41 Billion
CAGR 2024-20296.44%
Fastest Growing SegmentSUV
Largest MarketAsia-Pacific

A primary role of passenger car thermal systems is engine cooling. This is achieved through components like radiators, cooling fans, and coolant pumps, which ensure the engine operates within its optimal temperature range. Proper engine cooling promotes efficient combustion, reduces emissions, and extends engine life. With increasing emissions regulations, effective thermal management is essential for automakers to meet environmental standards while maintaining performance.

Cabin comfort is another critical function of these systems. Heating, ventilation, and air conditioning (HVAC) systems are essential for creating a pleasant cabin environment. They provide heating in cold weather and cooling in hot conditions, enhancing passenger comfort. Advances in HVAC technology, such as eco-friendly refrigerants and energy-efficient compressors, help lower the environmental impact of vehicle operation.

In electric and hybrid vehicles (EVs and HEVs), thermal systems have gained greater significance. Battery thermal management systems are vital for regulating the temperature of lithium-ion batteries, which are central to these vehicles. Effective management of battery temperature ensures safety, extends battery life, and optimizes driving range. Techniques like liquid cooling, phase-change materials, and advanced insulation address the unique thermal challenges of electric drivetrains.

Thermal systems also play a key role in maintaining the functionality of various components, including transmissions, powertrains, and exhaust systems, by preventing overheating and ensuring reliable vehicle performance.

The future of passenger car thermal systems is increasingly shaped by sustainability and environmental concerns. Manufacturers are focusing on eco-friendly solutions, such as lightweight materials to reduce energy consumption, renewable energy integration, and systems designed to minimize carbon footprints.

Global Passenger Car Thermal System Market is vital for enhancing engine performance, passenger comfort, and environmental sustainability. As the automotive industry evolves, these systems will continue to address challenges related to electric mobility, emissions regulations, and the demand for improved comfort and environmental responsibility.

Key Market Drivers

Rising Demand for Electric Vehicles (EVs)

The increasing popularity of EVs is a major driver for the thermal system market. Battery thermal management systems are crucial for regulating lithium-ion battery temperatures, ensuring safety, and maximizing performance. As governments worldwide promote electric mobility, the demand for advanced thermal solutions in EVs continues to surge. The International Energy Agency (IEA) reported that the global electric car fleet experienced robust growth, with sales expected to hit 17 million in 2024. Although some markets faced short-term challenges, current policies suggested that nearly one-third of vehicles on the roads in China would be electric by 2030, while nearly one-fifth of vehicles in the United States and the European Union would also be electric.

Stringent Emissions Regulations

Stringent emissions standards are compelling automakers to invest in innovative exhaust gas management solutions. Thermal systems play a pivotal role in reducing harmful emissions, improving engine efficiency, and ensuring compliance with emissions regulations globally. For instance, In May 2024, it was reported that electric vehicle manufacturers were expected to shift towards natural refrigerants for air conditioning. Over the next five years, OEMs were likely to choose CO2 (R744) or propane (R290) over the commonly used HFO 1234yf in mobile air-conditioning systems for plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs).

Consumer Focus on Cabin Comfort

Passenger comfort remains a top priority for consumers. As a result, HVAC systems within thermal systems are continuously evolving to provide efficient heating, ventilation, and air conditioning. Multi-zone climate control, eco-friendly refrigerants, and energy-efficient HVAC solutions cater to consumer demands for enhanced cabin comfort.

Advancements in Battery Technology

Ongoing advancements in battery technology have increased the range and performance of electric vehicles. This necessitates advanced battery thermal management systems to regulate temperatures effectively, extend battery life, and enhance overall EV performance.

Growing Urbanization

The trend of urbanization, with more people residing in cities, has led to increased demand for compact and efficient passenger vehicles. Thermal systems in these vehicles are designed to optimize space and performance, ensuring efficient cooling and heating solutions in compact packages.

Technological Innovation

Continuous technological innovation is driving the development of more efficient thermal management solutions. Liquid cooling systems, phase-change materials, and advanced insulation materials are being integrated into thermal systems to meet evolving performance and sustainability requirements.

Government Support for Sustainable Transportation

Governments worldwide are actively promoting sustainable transportation solutions, including electric and hybrid vehicles. Subsidies, tax incentives, and stringent emissions targets encourage automakers to invest in cutting-edge thermal technologies for environmentally friendly vehicles.

Environmental Sustainability

Sustainability concerns are pushing the industry to develop eco-friendly thermal solutions. Lightweight materials, renewable energy sources, and energy-efficient technologies are being adopted to minimize the environmental impact of thermal systems, aligning with global sustainability goals.

Global Passenger Car Thermal System Market is shaped by a complex interplay of factors, ranging from the rapid adoption of EVs and emissions regulations to consumer comfort expectations and ongoing technological advancements. As the automotive industry continues to evolve, thermal systems will play a pivotal role in meeting the demands of electric mobility, emissions reduction, and passenger comfort.

Key Market Challenges

Emission Reduction Targets

The automotive industry is under constant pressure to reduce emissions to comply with stringent regulations aimed at curbing air pollution and mitigating climate change. Achieving these targets requires innovative exhaust gas management solutions within thermal systems, which can be technologically complex and expensive to develop and implement.

Electrification Transition

While the electrification of vehicles is a positive step toward reducing greenhouse gas emissions, it poses challenges for thermal systems. Developing efficient battery thermal management systems capable of maintaining optimal temperatures for lithium-ion batteries is critical. This transition also necessitates a shift in engineering expertise and supply chain management.

Battery Range and Charging Infrastructure

The limited driving range of some EVs remains a concern for consumers. Thermal systems play a key role in managing battery temperatures to extend range, but this requires sophisticated thermal solutions. Availability and accessibility of charging infrastructure must improve to alleviate range anxiety and promote EV adoption.

Cost Constraints

The automotive industry must balance the need for efficient thermal systems with cost considerations. High-performance thermal management solutions, particularly for batteries, can increase the overall cost of the vehicle. Finding cost-effective materials and manufacturing processes while maintaining performance is a constant challenge.

Consumer Expectations

Consumers expect a comfortable cabin environment with efficient heating and cooling. Meeting these expectations while ensuring energy efficiency and reducing environmental impact is a balancing act. Developing HVAC systems that are both efficient and capable of providing rapid cabin temperature adjustments presents an ongoing challenge.

Extreme Weather Conditions

Vehicles operate in diverse climates, from sweltering summers to frigid winters. Thermal systems must perform reliably under extreme conditions, which can strain components like radiators, compressors, and coolant systems. Designing thermal systems that function optimally across a wide range of temperatures is a complex engineering challenge.

Global Supply Chain Disruptions

Recent disruptions in the global supply chain have exposed vulnerabilities in sourcing critical components for thermal systems. Ensuring a stable supply chain, particularly for specialized components like refrigerants and advanced materials, is vital to maintaining production and meeting market demands.

Integration with Autonomous Driving

The advent of autonomous driving introduces additional challenges for thermal management. Autonomous vehicles may require sophisticated thermal solutions to ensure the reliable operation of sensors, computers, and advanced driver assistance systems (ADAS). Maintaining thermal comfort for passengers while integrating complex autonomous systems is a multifaceted challenge.

The Global Passenger Car Thermal System Market confronts a multitude of challenges, from regulatory pressures to technological complexities and consumer demands. Overcoming these challenges requires continuous innovation, collaboration among industry stakeholders, and a commitment to environmentally responsible solutions.

Key Market Trends

Electrification Emphasis

The shift toward electric vehicles (EVs) is a prominent trend. Thermal systems are adapting to efficiently manage battery temperatures in EVs, optimizing performance, safety, and longevity. Liquid cooling, phase-change materials, and advanced insulation are being employed for effective battery thermal management.

Sustainable Solutions

Sustainability is a pervasive trend, with automakers focusing on eco-friendly thermal technologies. Lightweight materials, renewable energy sources for heating and cooling, and the adoption of eco-friendly refrigerants are reducing the environmental footprint of thermal systems.

Advanced HVAC

Heating, ventilation, and air conditioning (HVAC) systems are evolving to provide more efficient cabin climate control. Multi-zone climate control, air purification, and energy-efficient compressors cater to consumer demands for enhanced passenger comfort while minimizing energy consumption.

Smart Thermal Systems

Integration of smart sensors and artificial intelligence (AI) in thermal systems is a growing trend. These systems can adapt to real-time conditions, optimizing heating and cooling to enhance efficiency and passenger comfort. Predictive maintenance based on sensor data is also becoming more prevalent.

Efficient Exhaust Gas Management

As emissions regulations become more stringent, thermal systems play a crucial role in managing exhaust gases. Innovations in exhaust gas recirculation (EGR) systems, selective catalytic reduction (SCR) technologies, and improved turbocharging are aiding in emissions reduction.

Thermal Comfort for Autonomous Vehicles

With the rise of autonomous driving, ensuring passenger thermal comfort is essential. Advanced thermal systems are being developed to provide optimal cabin conditions for passengers while also ensuring the reliable operation of sensors and ADAS components.

Modular Thermal Systems

Modular thermal systems are gaining popularity. These systems allow for greater flexibility in vehicle design and manufacturing, making it easier to integrate thermal components into various vehicle models.

Integration of Renewable Energy

Automakers are exploring the integration of renewable energy sources, such as solar panels, into thermal systems. Solar-powered ventilation and cooling systems are being incorporated to reduce the load on traditional HVAC systems, especially in hybrid and electric vehicles.

Global Passenger Car Thermal System Market is characterized by a transition toward electrification, sustainability initiatives, enhanced passenger comfort, and the integration of smart technologies. These trends are driving the development of more efficient, eco-friendly, and adaptive thermal systems to meet the evolving needs of the automotive industry and its consumers.

Segmental Insights

Vehicle Type Insight

The SUV segment has rapidly become the fastest-growing area in the Passenger Car Thermal System Market due to several pivotal factors. The increasing popularity of SUVs among consumers is a primary driver. These vehicles are favored for their versatility, higher driving position, and spacious interiors, which has led to heightened demand for advanced thermal management systems. Unlike traditional passenger cars, SUVs often feature larger engines and more complex systems that require robust thermal solutions to ensure optimal performance, engine efficiency, and passenger comfort.

Modern SUVs come equipped with a plethora of advanced features, including heated and cooled seats, panoramic sunroofs, and extensive infotainment systems. These features increase the complexity of thermal management requirements, driving demand for sophisticated systems that can effectively handle varying thermal loads. As SUVs incorporate more high-tech amenities, the need for enhanced thermal solutions becomes more critical.

In addition to consumer preferences and advanced features, stringent emissions regulations and efficiency standards play a significant role in driving growth in this segment. Automakers must adopt innovative thermal management technologies to meet regulatory requirements while maintaining fuel efficiency and reducing emissions. This regulatory pressure pushes manufacturers to develop and integrate advanced thermal systems into their SUVs.

The trend toward electrification is also influencing the SUV market. As electric and hybrid SUVs become more prevalent, the demand for effective battery thermal management systems increases. These systems are essential for maintaining battery performance and longevity, further propelling growth in the thermal management sector.

The combination of growing consumer demand for SUVs, the need for advanced thermal management to support high-tech features, regulatory pressures, and the rise of electrification trends has positioned SUVs as the fastest-growing segment in the Passenger Car Thermal System Market.

Regional Insights

The Asia-Pacific region dominates the Passenger Car Thermal System Market due to several key factors that drive its leading position. The region is home to some of the world's largest automotive manufacturing hubs, including countries like China, Japan, and South Korea. These countries have a robust automotive industry that drives substantial demand for advanced thermal management systems in passenger vehicles. The high volume of vehicle production and sales in this region significantly contributes to its dominance in the market.

Rapid economic growth and urbanization in Asia-Pacific have led to increased vehicle ownership and rising standards of living. As more consumers in the region purchase passenger cars, there is a heightened need for efficient thermal management systems to ensure vehicle performance and comfort. The growing middle class, particularly in emerging markets like India and Southeast Asia, is further fueling demand for advanced thermal solutions.

Stringent environmental regulations and emission standards in countries like China have necessitated the adoption of advanced thermal management technologies. Automakers in the region are required to implement innovative systems to meet regulatory requirements, which drives the demand for sophisticated thermal solutions. This regulatory pressure compels manufacturers to invest in and adopt the latest technologies in thermal management.

Asia-Pacific region is experiencing a significant shift towards electric and hybrid vehicles, which require specialized thermal management systems for battery cooling and overall vehicle efficiency. The increasing adoption of electric vehicles (EVs) and hybrid vehicles in the region has accelerated the demand for advanced thermal solutions tailored to these new technologies.

The combination of large-scale automotive production, rising vehicle ownership, stringent environmental regulations, and the growth of electric and hybrid vehicles makes Asia-Pacific the dominant market in the Passenger Car Thermal System sector.

Key Market Players

  • Robert Bosch GmbH
  • Dana Incorporated
  • MAHLE GmbH
  • Gentherm Inc
  • Hanon Systems
  • DENSO Corporation
  • BorgWarner Inc
  • Continental AG
  • Modine Manufacturing Company
  • Schaeffler AG.

Report Scope:

In this report, the Global Passenger Car Thermal System Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Passenger Car Thermal System Market, By Vehicle Type:

  • SUV
  • MUV
  • Sedan
  • Hatchback

Passenger Car Thermal System Market, By Application:

  • HVAC
  • Powertrain Cooling
  • Fluid Transport
  • Others

Passenger Car Thermal System Market, By Propulsion:

  • ICE Vehicles
  • Electric Vehicles and Hybrid Vehicles

Passenger Car Thermal System Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe & CIS
    • Germany
    • Spain
    • France
    • Russia
    • Italy
    • United Kingdom
    • Belgium
  • Asia-Pacific
    • China
    • India
    • Japan
    • Indonesia
    • Thailand
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • Turkey
    • Iran
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Passenger Car Thermal System Market.

Available Customizations:

Global Passenger Car Thermal System Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Introduction

  • 1.1. Market Overview
  • 1.2. Key Highlights of the Report
  • 1.3. Market Coverage
  • 1.4. Market Segments Covered
  • 1.5. Research Tenure Considered

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Market Overview
  • 3.2. Market Forecast
  • 3.3. Key Regions
  • 3.4. Key Segments

4. Impact of COVID-19 on Global Passenger Car Thermal System Market

5. Global Passenger Car Thermal System Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Vehicle Type Market Share Analysis (SUV, MUV, Sedan, Hatchback)
    • 5.2.2. By Application Market Share Analysis (HVAC, Powertrain Cooling, Fluid Transport, Others)
    • 5.2.3. By Propulsion Market Share Analysis (ICE Vehicles, Electric and Hybrid Vehicles)
    • 5.2.4. By Regional Market Share Analysis
      • 5.2.4.1. Asia-Pacific Market Share Analysis
      • 5.2.4.2. Europe & CIS Market Share Analysis
      • 5.2.4.3. North America Market Share Analysis
      • 5.2.4.4. South America Market Share Analysis
      • 5.2.4.5. Middle East & Africa Market Share Analysis
    • 5.2.5. By Company Market Share Analysis (Top 5 Companies, Others - By Value, 2023)
  • 5.3. Global Passenger Car Thermal System Market Mapping & Opportunity Assessment
    • 5.3.1. By Vehicle Type Market Mapping & Opportunity Assessment
    • 5.3.2. By Application Market Mapping & Opportunity Assessment
    • 5.3.3. By Propulsion Market Mapping & Opportunity Assessment
    • 5.3.4. By Regional Market Mapping & Opportunity Assessment

6. Asia-Pacific Passenger Car Thermal System Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Vehicle Type Market Share Analysis
    • 6.2.2. By Application Market Share Analysis
    • 6.2.3. By Propulsion Market Share Analysis
    • 6.2.4. By Country Market Share Analysis
      • 6.2.4.1. China Market Share Analysis
      • 6.2.4.2. India Market Share Analysis
      • 6.2.4.3. Japan Market Share Analysis
      • 6.2.4.4. Indonesia Market Share Analysis
      • 6.2.4.5. Thailand Market Share Analysis
      • 6.2.4.6. South Korea Market Share Analysis
      • 6.2.4.7. Australia Market Share Analysis
      • 6.2.4.8. Rest of Asia-Pacific Market Share Analysis
  • 6.3. Asia-Pacific: Country Analysis
    • 6.3.1. China Passenger Car Thermal System Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Vehicle Type Market Share Analysis
        • 6.3.1.2.2. By Application Market Share Analysis
        • 6.3.1.2.3. By Propulsion Market Share Analysis
    • 6.3.2. India Passenger Car Thermal System Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Vehicle Type Market Share Analysis
        • 6.3.2.2.2. By Application Market Share Analysis
        • 6.3.2.2.3. By Propulsion Market Share Analysis
    • 6.3.3. Japan Passenger Car Thermal System Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Vehicle Type Market Share Analysis
        • 6.3.3.2.2. By Application Market Share Analysis
        • 6.3.3.2.3. By Propulsion Market Share Analysis
    • 6.3.4. Indonesia Passenger Car Thermal System Market Outlook
      • 6.3.4.1. Market Size & Forecast
        • 6.3.4.1.1. By Value
      • 6.3.4.2. Market Share & Forecast
        • 6.3.4.2.1. By Vehicle Type Market Share Analysis
        • 6.3.4.2.2. By Application Market Share Analysis
        • 6.3.4.2.3. By Propulsion Market Share Analysis
    • 6.3.5. Thailand Passenger Car Thermal System Market Outlook
      • 6.3.5.1. Market Size & Forecast
        • 6.3.5.1.1. By Value
      • 6.3.5.2. Market Share & Forecast
        • 6.3.5.2.1. By Vehicle Type Market Share Analysis
        • 6.3.5.2.2. By Application Market Share Analysis
        • 6.3.5.2.3. By Propulsion Market Share Analysis
    • 6.3.6. South Korea Passenger Car Thermal System Market Outlook
      • 6.3.6.1. Market Size & Forecast
        • 6.3.6.1.1. By Value
      • 6.3.6.2. Market Share & Forecast
        • 6.3.6.2.1. By Vehicle Type Market Share Analysis
        • 6.3.6.2.2. By Application Market Share Analysis
        • 6.3.6.2.3. By Propulsion Market Share Analysis
    • 6.3.7. Australia Passenger Car Thermal System Market Outlook
      • 6.3.7.1. Market Size & Forecast
        • 6.3.7.1.1. By Value
      • 6.3.7.2. Market Share & Forecast
        • 6.3.7.2.1. By Vehicle Type Market Share Analysis
        • 6.3.7.2.2. By Application Market Share Analysis
        • 6.3.7.2.3. By Propulsion Market Share Analysis

7. Europe & CIS Passenger Car Thermal System Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Vehicle Type Market Share Analysis
    • 7.2.2. By Application Market Share Analysis
    • 7.2.3. By Propulsion Market Share Analysis
    • 7.2.4. By Country Market Share Analysis
      • 7.2.4.1. Germany Market Share Analysis
      • 7.2.4.2. Spain Market Share Analysis
      • 7.2.4.3. France Market Share Analysis
      • 7.2.4.4. Russia Market Share Analysis
      • 7.2.4.5. Italy Market Share Analysis
      • 7.2.4.6. United Kingdom Market Share Analysis
      • 7.2.4.7. Belgium Market Share Analysis
      • 7.2.4.8. Rest of Europe & CIS Market Share Analysis
  • 7.3. Europe & CIS: Country Analysis
    • 7.3.1. Germany Passenger Car Thermal System Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Vehicle Type Market Share Analysis
        • 7.3.1.2.2. By Application Market Share Analysis
        • 7.3.1.2.3. By Propulsion Market Share Analysis
    • 7.3.2. Spain Passenger Car Thermal System Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Vehicle Type Market Share Analysis
        • 7.3.2.2.2. By Application Market Share Analysis
        • 7.3.2.2.3. By Propulsion Market Share Analysis
    • 7.3.3. France Passenger Car Thermal System Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Vehicle Type Market Share Analysis
        • 7.3.3.2.2. By Application Market Share Analysis
        • 7.3.3.2.3. By Propulsion Market Share Analysis
    • 7.3.4. Russia Passenger Car Thermal System Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Vehicle Type Market Share Analysis
        • 7.3.4.2.2. By Application Market Share Analysis
        • 7.3.4.2.3. By Propulsion Market Share Analysis
    • 7.3.5. Italy Passenger Car Thermal System Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Vehicle Type Market Share Analysis
        • 7.3.5.2.2. By Application Market Share Analysis
        • 7.3.5.2.3. By Propulsion Market Share Analysis
    • 7.3.6. United Kingdom Passenger Car Thermal System Market Outlook
      • 7.3.6.1. Market Size & Forecast
        • 7.3.6.1.1. By Value
      • 7.3.6.2. Market Share & Forecast
        • 7.3.6.2.1. By Vehicle Type Market Share Analysis
        • 7.3.6.2.2. By Application Market Share Analysis
        • 7.3.6.2.3. By Propulsion Market Share Analysis
    • 7.3.7. Belgium Passenger Car Thermal System Market Outlook
      • 7.3.7.1. Market Size & Forecast
        • 7.3.7.1.1. By Value
      • 7.3.7.2. Market Share & Forecast
        • 7.3.7.2.1. By Vehicle Type Market Share Analysis
        • 7.3.7.2.2. By Application Market Share Analysis
        • 7.3.7.2.3. By Propulsion Market Share Analysis

8. North America Passenger Car Thermal System Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Vehicle Type Market Share Analysis
    • 8.2.2. By Application Market Share Analysis
    • 8.2.3. By Propulsion Market Share Analysis
    • 8.2.4. By Country Market Share Analysis
      • 8.2.4.1. United States Market Share Analysis
      • 8.2.4.2. Mexico Market Share Analysis
      • 8.2.4.3. Canada Market Share Analysis
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Passenger Car Thermal System Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Vehicle Type Market Share Analysis
        • 8.3.1.2.2. By Application Market Share Analysis
        • 8.3.1.2.3. By Propulsion Market Share Analysis
    • 8.3.2. Mexico Passenger Car Thermal System Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Vehicle Type Market Share Analysis
        • 8.3.2.2.2. By Application Market Share Analysis
        • 8.3.2.2.3. By Propulsion Market Share Analysis
    • 8.3.3. Canada Passenger Car Thermal System Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Vehicle Type Market Share Analysis
        • 8.3.3.2.2. By Application Market Share Analysis
        • 8.3.3.2.3. By Propulsion Market Share Analysis

9. South America Passenger Car Thermal System Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Vehicle Type Market Share Analysis
    • 9.2.2. By Application Market Share Analysis
    • 9.2.3. By Propulsion Market Share Analysis
    • 9.2.4. By Country Market Share Analysis
      • 9.2.4.1. Brazil Market Share Analysis
      • 9.2.4.2. Argentina Market Share Analysis
      • 9.2.4.3. Colombia Market Share Analysis
      • 9.2.4.4. Rest of South America Market Share Analysis
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Passenger Car Thermal System Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Vehicle Type Market Share Analysis
        • 9.3.1.2.2. By Application Market Share Analysis
        • 9.3.1.2.3. By Propulsion Market Share Analysis
    • 9.3.2. Colombia Passenger Car Thermal System Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Vehicle Type Market Share Analysis
        • 9.3.2.2.2. By Application Market Share Analysis
        • 9.3.2.2.3. By Propulsion Market Share Analysis
    • 9.3.3. Argentina Passenger Car Thermal System Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Vehicle Type Market Share Analysis
        • 9.3.3.2.2. By Application Market Share Analysis
        • 9.3.3.2.3. By Propulsion Market Share Analysis

10. Middle East & Africa Passenger Car Thermal System Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Vehicle Type Market Share Analysis
    • 10.2.2. By Application Market Share Analysis
    • 10.2.3. By Propulsion Market Share Analysis
    • 10.2.4. By Country Market Share Analysis
      • 10.2.4.1. Turkey Market Share Analysis
      • 10.2.4.2. Iran Market Share Analysis
      • 10.2.4.3. Saudi Arabia Market Share Analysis
      • 10.2.4.4. UAE Market Share Analysis
      • 10.2.4.5. Rest of Middle East & Africa Market Share Analysis
  • 10.3. Middle East & Africa: Country Analysis
    • 10.3.1. Turkey Passenger Car Thermal System Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Vehicle Type Market Share Analysis
        • 10.3.1.2.2. By Application Market Share Analysis
        • 10.3.1.2.3. By Propulsion Market Share Analysis
    • 10.3.2. Iran Passenger Car Thermal System Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Vehicle Type Market Share Analysis
        • 10.3.2.2.2. By Application Market Share Analysis
        • 10.3.2.2.3. By Propulsion Market Share Analysis
    • 10.3.3. Saudi Arabia Passenger Car Thermal System Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Vehicle Type Market Share Analysis
        • 10.3.3.2.2. By Application Market Share Analysis
        • 10.3.3.2.3. By Propulsion Market Share Analysis
    • 10.3.4. UAE Passenger Car Thermal System Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Vehicle Type Market Share Analysis
        • 10.3.4.2.2. By Application Market Share Analysis
        • 10.3.4.2.3. By Propulsion Market Share Analysis

11. SWOT Analysis

  • 11.1. Strength
  • 11.2. Weakness
  • 11.3. Opportunities
  • 11.4. Threats

12. Market Dynamics

  • 12.1. Market Drivers
  • 12.2. Market Challenges

13. Market Trends and Developments

14. Competitive Landscape

  • 14.1. Company Profiles (Up to 10 Major Companies)
    • 14.1.1. Robert Bosch GmbH
      • 14.1.1.1. Company Details
      • 14.1.1.2. Key Product Offered
      • 14.1.1.3. Financials (As Per Availability)
      • 14.1.1.4. Recent Developments
      • 14.1.1.5. Key Management Personnel
    • 14.1.2. Dana Incorporated
      • 14.1.2.1. Company Details
      • 14.1.2.2. Key Product Offered
      • 14.1.2.3. Financials (As Per Availability)
      • 14.1.2.4. Recent Developments
      • 14.1.2.5. Key Management Personnel
    • 14.1.3. MAHLE GmbH
      • 14.1.3.1. Company Details
      • 14.1.3.2. Key Product Offered
      • 14.1.3.3. Financials (As Per Availability)
      • 14.1.3.4. Recent Developments
      • 14.1.3.5. Key Management Personnel
    • 14.1.4. Gentherm Inc
      • 14.1.4.1. Company Details
      • 14.1.4.2. Key Product Offered
      • 14.1.4.3. Financials (As Per Availability)
      • 14.1.4.4. Recent Developments
      • 14.1.4.5. Key Management Personnel
    • 14.1.5. Hanon Systems
      • 14.1.5.1. Company Details
      • 14.1.5.2. Key Product Offered
      • 14.1.5.3. Financials (As Per Availability)
      • 14.1.5.4. Recent Developments
      • 14.1.5.5. Key Management Personnel
    • 14.1.6. Denso Corporation
      • 14.1.6.1. Company Details
      • 14.1.6.2. Key Product Offered
      • 14.1.6.3. Financials (As Per Availability)
      • 14.1.6.4. Recent Developments
      • 14.1.6.5. Key Management Personnel
    • 14.1.7. BorgWarner Inc
      • 14.1.7.1. Company Details
      • 14.1.7.2. Key Product Offered
      • 14.1.7.3. Financials (As Per Availability)
      • 14.1.7.4. Recent Developments
      • 14.1.7.5. Key Management Personnel
    • 14.1.8. Continental AG
      • 14.1.8.1. Company Details
      • 14.1.8.2. Key Product Offered
      • 14.1.8.3. Financials (As Per Availability)
      • 14.1.8.4. Recent Developments
      • 14.1.8.5. Key Management Personnel
    • 14.1.9. Modine Manufacturing Company
      • 14.1.9.1. Company Details
      • 14.1.9.2. Key Product Offered
      • 14.1.9.3. Financials (As Per Availability)
      • 14.1.9.4. Recent Developments
      • 14.1.9.5. Key Management Personnel
    • 14.1.10. Schaeffler AG.
      • 14.1.10.1. Company Details
      • 14.1.10.2. Key Product Offered
      • 14.1.10.3. Financials (As Per Availability)
      • 14.1.10.4. Recent Developments
      • 14.1.10.5. Key Management Personnel

15. Strategic Recommendations

  • 15.1. Key Focus Areas
    • 15.1.1. Target Regions
    • 15.1.2. Target Vehicle Type
    • 15.1.3. Target Propulsion

16. About Us & Disclaimer