封面
市场调查报告书
商品编码
1642988

复合气瓶市场 - 全球产业规模、份额、趋势、机会和预测,按材料、罐类型、应用、最终用户、地区和竞争细分,2020-2030F

Composite Cylinders Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Material, By Tank Type, By Application, By End-user, By Region & Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 188 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024年全球复合气瓶市场估值为11.4亿美元,预计到2030年将达到15.4亿美元,到2030年复合年增长率为4.96%。

市场概况
预测期 2026-2030
2024 年市场规模 11.4亿美元
2030 年市场规模 15.4亿美元
2025-2030 年复合年增长率 4.96%
成长最快的细分市场 玻璃纤维
最大的市场 亚太地区

复合气瓶市场是指专注于生产和销售由碳纤维和玻璃纤维等复合材料製成的先进轻型气瓶的行业,通常用聚合物树脂增强。这些气瓶设计用于有效储存液化石油气(LPG)、压缩天然气(CNG) 和氢气等气体,与传统钢或铝气瓶相比,具有卓越的强度重量比、耐腐蚀性和更高的安全性。该市场服务于各种应用,包括汽车和运输、航太和国防、住宅天然气储存和工业运营。全球对永续能源解决方案的需求不断增长,特别是向氢气和压缩天然气等替代燃料的过渡,这需要先进的储存技术,推动了复合气瓶市场的成长。此外,汽车产业向节能和环保车辆的转变也提振了市场,其中轻质复合材料气缸有助于提高车辆性能并减少排放。为了应对严格的环境法规,氢燃料电池和压缩天然气汽车的采用不断增加,预计将进一步加速市场成长。此外,工业应用受益于这些汽缸的耐用性和安全特性,从而实现长期成本节约和营运效率。亚太和中东等新兴市场基础建设和工业化快速扩张,带来了巨大的成长机会。复合气瓶市场也得到持续技术进步的支持,包括改进的製造技术、开发具有成本效益的复合材料以及增强的气瓶设计,以提供更高的耐压能力和更长的使用寿命。消费者安全意识的提高,加上政府对清洁能源采取的激励措施,可能会维持对复合气瓶的需求。随着世界各地的产业和政府强调脱碳和永续实践,复合气瓶市场有望在预测期内实现强劲成长,从而改变多个产业的气体储存和利用方式。复合气瓶越来越多地用于车辆压缩天然气 (CNG) 和液化石油气 (LPG) 储罐。 NGV 的采用预计将增加,预计到 2025 年将有 500-700 万辆 NGV 上路,从而推动对复合材料气瓶的需求。

主要市场驱动因素

对轻质耐用气体储存解决方案的需求不断增长

过渡到更清洁和可持续的能源

复合材料技术的进步

主要市场挑战

复合气瓶的初始投资成本较高

新兴经济体的认知与采用有限

主要市场趋势

替代能源应用的不断普及

製造工艺的技术进步

扩大在食品和饮料行业的应用

细分市场洞察

材料洞察

区域洞察

目录

第 1 章:产品概述

第 2 章:研究方法

第 3 章:执行摘要

第 4 章:客户之声

第 5 章:全球复合气瓶市场概述

第 6 章:全球复合气瓶市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 依材质(玻璃纤维、碳纤维、其他)
    • 依储槽类型(LPG 钢瓶、CNG 钢瓶、氢气瓶、其他)
    • 按应用(汽车和运输、航太和国防、天然气储存、其他)
    • 按最终用户(住宅、商业、工业)
    • 按地区(北美、欧洲、南美、中东和非洲、亚太地区)
  • 按公司划分 (2024)
  • 市场地图

第 7 章:北美复合气瓶市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按材质
    • 按罐体类型
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第 8 章:欧洲复合气瓶市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按材质
    • 按罐体类型
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙
    • 比利时

第 9 章:亚太地区复合气瓶市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按材质
    • 按罐体类型
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲
    • 印尼
    • 越南

第 10 章:南美洲复合气瓶市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按材质
    • 按罐体类型
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷
    • 智利

第 11 章:中东和非洲复合气瓶市场展望

  • 市场规模及预测
    • 按价值
  • 市占率及预测
    • 按材质
    • 按罐体类型
    • 按申请
    • 按最终用户
    • 按国家/地区
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非
    • 土耳其
    • 以色列

第 12 章:市场动态

  • 司机
  • 挑战

第 13 章:市场趋势与发展

第 14 章:公司简介

  • Hexagon Composites ASA
  • FABER INDUSTRIE SPA
  • Luxfer Holdings PLC
  • Worthington Enterprises, Inc
  • Time Technoplast Ltd.
  • Beijing Jingcheng Machinery Electric Co,ltd.
  • Sinoma Science & Technology Co.,Ltd.
  • Steelhead Composites, Inc.
  • Aburi Composites.
  • Supreme Industries Limited.

第 15 章:策略建议

第16章调查会社について・免责事项

简介目录
Product Code: 3966

The Global Composite Cylinders Market was valued at USD 1.14 Billion in 2024 and is expected to reach USD 1.54 Billion by 2030 with a CAGR of 4.96% through 2030.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 1.14 Billion
Market Size 2030USD 1.54 Billion
CAGR 2025-20304.96%
Fastest Growing SegmentGlass Fiber
Largest MarketAsia Pacific

The Composite Cylinders market refers to the industry focused on the production and distribution of advanced, lightweight cylinders made from composite materials such as carbon fiber and glass fiber, typically reinforced with polymer resins. These cylinders are designed to store gases like liquefied petroleum gas (LPG), compressed natural gas (CNG), and hydrogen efficiently, offering superior strength-to-weight ratios, corrosion resistance, and enhanced safety compared to traditional steel or aluminum cylinders. The market serves various applications, including automotive and transportation, aerospace and defense, residential gas storage, and industrial operations. The growth of the Composite Cylinders market is driven by increasing global demand for sustainable energy solutions, particularly the transition to alternative fuels such as hydrogen and CNG, which require advanced storage technologies. Additionally, the market is bolstered by the automotive sector's shift toward fuel-efficient and eco-friendly vehicles, where lightweight composite cylinders help improve vehicle performance and reduce emissions. The rising adoption of hydrogen fuel cells and compressed natural gas vehicles in response to strict environmental regulations is expected to further accelerate market growth. Moreover, industrial applications benefit from these cylinders' durability and safety features, enabling long-term cost savings and operational efficiency. Emerging markets in Asia-Pacific and the Middle East, where infrastructure development and industrialization are rapidly expanding, present significant growth opportunities. The Composite Cylinders market is also supported by ongoing technological advancements, including improved manufacturing techniques, the development of cost-effective composite materials, and enhanced cylinder designs that offer higher pressure tolerance and extended lifespans. Increasing consumer awareness of safety, coupled with governmental incentives for clean energy adoption, is likely to sustain the demand for composite cylinders. As industries and governments worldwide emphasize decarbonization and sustainable practices, the Composite Cylinders market is poised for robust growth during the forecast period, transforming how gases are stored and utilized across multiple sectors. Composite cylinders are increasingly used in compressed natural gas (CNG) and liquefied petroleum gas (LPG) tanks for vehicles. The adoption of NGVs is expected to increase, with an estimated 5-7 million NGVs expected to be on the roads by 2025, propelling the demand for composite cylinders.

Key Market Drivers

Rising Demand for Lightweight and Durable Gas Storage Solutions

The global Composite Cylinders market is witnessing robust growth due to the increasing demand for lightweight and durable gas storage solutions across various industries. Traditional gas cylinders, often manufactured from steel or aluminum, are heavy, prone to corrosion, and can present safety concerns during handling and transportation. Composite cylinders, made from advanced materials such as carbon fiber, glass fiber, and polymer resins, offer a superior alternative by combining high durability with significantly reduced weight. These cylinders are widely recognized for their ability to withstand high-pressure environments while maintaining a lightweight structure, which is critical for applications in the automotive, aerospace, and industrial sectors.

The automotive and transportation industry, in particular, is driving demand for composite cylinders as it transitions toward sustainable fuel alternatives such as compressed natural gas and hydrogen. Lightweight cylinders improve fuel efficiency and reduce the overall weight of vehicles, enhancing performance and lowering carbon emissions. Additionally, industries such as healthcare and residential gas storage benefit from the ease of handling and enhanced safety features of composite cylinders, further contributing to market expansion. The trend toward compact, lightweight, and corrosion-resistant solutions in critical industries highlights the growing preference for composite cylinders over traditional counterparts, positioning the market for sustained growth. The hydrogen storage market is one of the key contributors to the composite cylinder market. With the rise of hydrogen fuel-cell vehicles and the adoption of hydrogen as a clean energy source, composite cylinders are expected to witness a surge in demand. Hydrogen storage in composite cylinders is projected to grow at a CAGR of 15-20% over the next decade.

Transition to Cleaner and Sustainable Energy Sources

The ongoing global shift toward cleaner and sustainable energy sources is a key driver of the Composite Cylinders market. Governments and regulatory bodies worldwide are implementing stringent environmental policies to reduce greenhouse gas emissions, driving the adoption of alternative fuels such as compressed natural gas and hydrogen. These energy sources require advanced storage solutions capable of handling high pressure while ensuring safety and efficiency. Composite cylinders are ideally suited to meet these requirements, making them a critical component of the energy transition.

The rising popularity of hydrogen as a clean energy carrier has significantly boosted the demand for composite cylinders. These cylinders are integral to hydrogen fuel cell vehicles and infrastructure, where their lightweight nature and ability to withstand high pressure are crucial for operational success. Moreover, compressed natural gas is increasingly being adopted as an alternative fuel for transportation and industrial applications due to its lower environmental impact compared to conventional fossil fuels. Composite cylinders play a vital role in enabling the safe and efficient storage of compressed natural gas, further fueling market growth.

In addition to transportation, the use of composite cylinders in residential and commercial settings for clean energy storage is on the rise. For instance, liquefied petroleum gas is widely utilized in household cooking and heating, and the shift to composite cylinders has improved safety and convenience for end-users. As industries and consumers continue to embrace sustainable energy solutions, the demand for composite cylinders is expected to grow significantly, driving innovation and investment in the market. The adoption of electric vehicles (EVs) is expected to reach 55 million vehicles globally by 2030, reducing reliance on fossil fuels. This shift is leading to increased demand for compressed natural gas (CNG) and hydrogen-powered vehicles, both of which require composite cylinders for fuel storage.

Advancements in Composite Material Technologies

Technological advancements in composite material manufacturing are propelling the Composite Cylinders market to new heights. Innovations in material science, particularly the development of high-strength carbon fiber and glass fiber composites, have significantly improved the performance characteristics of composite cylinders. These materials offer superior tensile strength, corrosion resistance, and lightweight properties, enabling manufacturers to produce cylinders that meet the stringent requirements of diverse applications.

The automotive and aerospace sectors, where weight reduction is paramount, are benefiting greatly from these advancements. Composite cylinders have become indispensable in these industries due to their ability to reduce overall system weight while maintaining exceptional strength and safety standards. Furthermore, advancements in manufacturing techniques, such as filament winding and resin transfer molding, have streamlined the production process, enhancing cost-efficiency and scalability for composite cylinder manufacturers.

Emerging research and development efforts are also focused on improving the recyclability and environmental sustainability of composite materials. As industries worldwide prioritize sustainable practices, the demand for eco-friendly composite cylinders is expected to increase. Additionally, the integration of smart technologies into composite cylinders, such as sensors for monitoring pressure and temperature, is enhancing their functionality and appeal. These technological developments are not only expanding the application scope of composite cylinders but also driving their adoption across new markets, ensuring steady growth for the industry.

Key Market Challenges

High Initial Investment Costs Associated with Composite Cylinders

The high initial investment costs required for the production and acquisition of composite cylinders pose a significant challenge for the market. Composite cylinders, which are manufactured using advanced materials such as carbon fiber, glass fiber, and polymer liners, necessitate substantial financial resources for raw materials, sophisticated production technologies, and stringent quality control measures. This elevated production cost is often transferred to the end user, making composite cylinders more expensive compared to their traditional metal counterparts. Industries with limited budgets or cost-sensitive operations may hesitate to adopt composite cylinders, despite their advantages such as lighter weight, corrosion resistance, and higher safety standards.

Additionally, small- and medium-sized enterprises, which form a significant portion of the market, often find it challenging to allocate resources for the procurement of composite cylinders due to their high upfront costs. The situation is further exacerbated in developing regions, where price sensitivity is even more pronounced. Although long-term benefits such as durability and reduced transportation costs could offset these initial expenses, many potential buyers are unwilling to commit to such investments without clear and immediate cost advantages. To address this challenge, market participants must explore strategies such as economies of scale, material innovation, and strategic partnerships to reduce production costs and make composite cylinders more affordable for a broader customer base.

Limited Awareness and Adoption in Emerging Economies

Limited awareness and adoption of composite cylinders in emerging economies is another critical challenge hindering market growth. While developed regions have recognized the advantages of composite cylinders, including improved safety features and ease of handling, their adoption in less industrialized nations remains relatively low. A lack of awareness about the product's benefits among consumers, coupled with limited promotional efforts by manufacturers and suppliers, has slowed the penetration of composite cylinders in these regions.

Moreover, traditional metal cylinders continue to dominate in many emerging economies due to their established presence and lower costs. The perception that composite cylinders are a luxury product rather than a practical investment also acts as a deterrent. Governments and regulatory bodies in these regions often prioritize cost efficiency over advanced technology, further complicating the shift towards composite solutions. This lack of demand results in limited local manufacturing capacities, which, in turn, keeps costs high and access constrained. To overcome this challenge, manufacturers must invest in targeted marketing campaigns, educational programs, and partnerships with local distributors. Demonstrating the long-term benefits of composite cylinders, such as reduced maintenance costs and enhanced safety, can help increase their adoption in these untapped markets.

Key Market Trends

Growing Adoption in Alternative Energy Applications

The composite cylinders market is witnessing increasing adoption in alternative energy applications, particularly in hydrogen storage and natural gas vehicles. As global efforts to transition to cleaner energy sources gain momentum, industries are exploring advanced storage solutions to support the growing demand for renewable energy and low-emission fuels. Composite cylinders are emerging as a preferred choice due to their lightweight properties, high-pressure resistance, and corrosion-free nature, which make them ideal for storing hydrogen and compressed natural gas.

In addition, the proliferation of hydrogen-powered vehicles and infrastructure development for hydrogen refueling stations are driving the demand for composite cylinders. Governments across regions are investing heavily in sustainable energy initiatives, creating a favorable environment for market growth. For example, the automotive sector's shift towards fuel cell vehicles is amplifying the need for advanced cylinder technologies to safely store hydrogen at high pressures. This trend is expected to create significant opportunities for manufacturers to innovate and cater to evolving industry requirements. The demand for hydrogen storage solutions, particularly high-pressure composite cylinders, is accelerating as the hydrogen fuel cell vehicle market expands. It is estimated that the number of hydrogen fuel cell vehicles will grow to over 10 million units by 2030.

Technological Advancements in Manufacturing Processes

Technological advancements in the manufacturing processes of composite cylinders are reshaping the market landscape. Innovations such as automated filament winding, resin transfer molding, and advanced polymer coatings are enabling the production of cylinders with enhanced durability, safety, and performance characteristics. These advancements are also contributing to cost reductions, making composite cylinders more accessible to a wider range of industries.

Moreover, manufacturers are integrating smart technologies such as Internet of Things sensors to enable real-time monitoring of cylinder pressure, temperature, and structural integrity. This integration not only enhances safety but also provides value-added features that appeal to end users in industries such as aerospace, defense, and logistics. The continued focus on research and development is anticipated to drive further improvements in manufacturing processes, bolstering market growth.

Expanding Application in the Food and Beverage Industry

The food and beverage industry is increasingly utilizing composite cylinders for applications such as carbonated beverage storage and food-grade gas distribution. Composite cylinders offer advantages such as being lightweight and easy to handle, which are critical for transportation and storage in this sector. Additionally, their non-corrosive properties ensure that food-grade gases remain uncontaminated, meeting stringent industry hygiene standards.

The rising demand for ready-to-eat foods and beverages, coupled with the growing trend of outdoor dining, has accelerated the need for reliable gas storage solutions. Composite cylinders are gaining traction as a preferred choice, especially for small- to medium-scale food and beverage operators. With the industry's focus on improving operational efficiency and safety, this trend is expected to drive sustained demand for composite cylinders in the coming years.

Segmental Insights

Material Insights

In 2024, the carbon fiber segment dominated the composite cylinders market and is expected to maintain its dominance during the forecast period. This can be attributed to the superior properties of carbon fiber, including its exceptional strength-to-weight ratio, high pressure resistance, and durability. These characteristics make carbon fiber composite cylinders ideal for applications that require lightweight yet robust storage solutions, such as in automotive, aerospace, and alternative energy sectors. The increasing adoption of hydrogen and compressed natural gas as cleaner energy alternatives has further propelled the demand for carbon fiber composite cylinders, as they are capable of withstanding high-pressure storage requirements while minimizing transportation costs. Additionally, carbon fiber cylinders are gaining preference in industries such as healthcare and firefighting, where portability and safety are critical factors. The segment's growth is further supported by ongoing advancements in manufacturing technologies, which are driving cost efficiency and improving product quality. Moreover, the rising focus on reducing carbon emissions and the implementation of stringent safety regulations across industries are encouraging the transition to advanced materials like carbon fiber. While the glass fiber segment remains competitive due to its lower cost and suitability for medium-pressure applications, the unparalleled performance and adaptability of carbon fiber composite cylinders position this segment as the leader in the composite cylinders market, with significant potential for continued growth during the forecast period.

Regional Insights

In 2024, the Asia Pacific region dominated the composite cylinders market and is expected to maintain its dominance during the forecast period. This can be attributed to the rapid industrialization, urbanization, and growing adoption of advanced storage technologies across industries in key countries such as China, India, and Japan. The increasing demand for composite cylinders in alternative energy applications, particularly for hydrogen and compressed natural gas storage, has significantly driven market growth in this region. Governments in Asia Pacific are actively promoting clean energy initiatives and investing in infrastructure for sustainable fuel solutions, further supporting the adoption of composite cylinders. Additionally, the region's expanding automotive and aerospace sectors have created a substantial demand for lightweight and high-strength storage solutions, which composite cylinders effectively provide.

Asia Pacific also benefits from the presence of a large number of manufacturers and suppliers, enabling cost-efficient production and wide availability of composite cylinders. The robust growth of industries such as healthcare, firefighting, and food and beverage further contributes to the region's leading position in the market. Moreover, increasing investments in research and development activities, coupled with favorable government policies, are encouraging innovation in composite cylinder manufacturing. While other regions, including North America and Europe, also show significant growth potential, the sheer scale of demand, supportive regulatory frameworks, and expanding industrial applications position Asia Pacific as the dominant region in the composite cylinders market, with sustained leadership anticipated throughout the forecast period.

Key Market Players

  • Hexagon Composites ASA
  • FABER INDUSTRIE SPA
  • Luxfer Holdings PLC
  • Worthington Enterprises, Inc
  • Time Technoplast Ltd.
  • Beijing Jingcheng Machinery Electric Co,ltd.
  • Sinoma Science & Technology Co.,Ltd.
  • Steelhead Composites, Inc
  • Aburi Composites
  • Supreme Industries Limited

Report Scope:

In this report, the Global Composite Cylinders Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Composite Cylinders Market, By Material:

  • Glass Fiber
  • Carbon Fiber
  • Others

Composite Cylinders Market, By Tank Type:

  • LPG Cylinders
  • CNG Cylinders
  • Hydrogen Cylinders
  • Others

Composite Cylinders Market, By Application:

  • Automotive & Transportation
  • Aerospace & Defense
  • Gas Storage
  • Others

Composite Cylinders Market, By End-user:

  • Residential
  • Commercial
  • Industrial

Composite Cylinders Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
    • Belgium
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
    • Indonesia
    • Vietnam
  • South America
    • Brazil
    • Colombia
    • Argentina
    • Chile
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa
    • Turkey
    • Israel

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Composite Cylinders Market.

Available Customizations:

Global Composite Cylinders Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Composite Cylinders Market Overview

6. Global Composite Cylinders Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Material (Glass Fiber, Carbon Fiber, Others)
    • 6.2.2. By Tank Type (LPG Cylinders, CNG Cylinders, Hydrogen Cylinders, Others)
    • 6.2.3. By Application (Automotive & Transportation, Aerospace & Defense, Gas Storage, Others)
    • 6.2.4. By End-user (Residential, Commercial, Industrial)
    • 6.2.5. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 6.3. By Company (2024)
  • 6.4. Market Map

7. North America Composite Cylinders Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Material
    • 7.2.2. By Tank Type
    • 7.2.3. By Application
    • 7.2.4. By End-user
    • 7.2.5. By Country
  • 7.3. North America: Country Analysis
    • 7.3.1. United States Composite Cylinders Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Material
        • 7.3.1.2.2. By Tank Type
        • 7.3.1.2.3. By Application
        • 7.3.1.2.4. By End-user
    • 7.3.2. Canada Composite Cylinders Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Material
        • 7.3.2.2.2. By Tank Type
        • 7.3.2.2.3. By Application
        • 7.3.2.2.4. By End-user
    • 7.3.3. Mexico Composite Cylinders Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Material
        • 7.3.3.2.2. By Tank Type
        • 7.3.3.2.3. By Application
        • 7.3.3.2.4. By End-user

8. Europe Composite Cylinders Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Material
    • 8.2.2. By Tank Type
    • 8.2.3. By Application
    • 8.2.4. By End-user
    • 8.2.5. By Country
  • 8.3. Europe: Country Analysis
    • 8.3.1. Germany Composite Cylinders Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Material
        • 8.3.1.2.2. By Tank Type
        • 8.3.1.2.3. By Application
        • 8.3.1.2.4. By End-user
    • 8.3.2. France Composite Cylinders Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Material
        • 8.3.2.2.2. By Tank Type
        • 8.3.2.2.3. By Application
        • 8.3.2.2.4. By End-user
    • 8.3.3. United Kingdom Composite Cylinders Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Material
        • 8.3.3.2.2. By Tank Type
        • 8.3.3.2.3. By Application
        • 8.3.3.2.4. By End-user
    • 8.3.4. Italy Composite Cylinders Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Material
        • 8.3.4.2.2. By Tank Type
        • 8.3.4.2.3. By Application
        • 8.3.4.2.4. By End-user
    • 8.3.5. Spain Composite Cylinders Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Material
        • 8.3.5.2.2. By Tank Type
        • 8.3.5.2.3. By Application
        • 8.3.5.2.4. By End-user
    • 8.3.6. Belgium Composite Cylinders Market Outlook
      • 8.3.6.1. Market Size & Forecast
        • 8.3.6.1.1. By Value
      • 8.3.6.2. Market Share & Forecast
        • 8.3.6.2.1. By Material
        • 8.3.6.2.2. By Tank Type
        • 8.3.6.2.3. By Application
        • 8.3.6.2.4. By End-user

9. Asia Pacific Composite Cylinders Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Material
    • 9.2.2. By Tank Type
    • 9.2.3. By Application
    • 9.2.4. By End-user
    • 9.2.5. By Country
  • 9.3. Asia Pacific: Country Analysis
    • 9.3.1. China Composite Cylinders Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Material
        • 9.3.1.2.2. By Tank Type
        • 9.3.1.2.3. By Application
        • 9.3.1.2.4. By End-user
    • 9.3.2. India Composite Cylinders Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Material
        • 9.3.2.2.2. By Tank Type
        • 9.3.2.2.3. By Application
        • 9.3.2.2.4. By End-user
    • 9.3.3. Japan Composite Cylinders Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Material
        • 9.3.3.2.2. By Tank Type
        • 9.3.3.2.3. By Application
        • 9.3.3.2.4. By End-user
    • 9.3.4. South Korea Composite Cylinders Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Material
        • 9.3.4.2.2. By Tank Type
        • 9.3.4.2.3. By Application
        • 9.3.4.2.4. By End-user
    • 9.3.5. Australia Composite Cylinders Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Material
        • 9.3.5.2.2. By Tank Type
        • 9.3.5.2.3. By Application
        • 9.3.5.2.4. By End-user
    • 9.3.6. Indonesia Composite Cylinders Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Material
        • 9.3.6.2.2. By Tank Type
        • 9.3.6.2.3. By Application
        • 9.3.6.2.4. By End-user
    • 9.3.7. Vietnam Composite Cylinders Market Outlook
      • 9.3.7.1. Market Size & Forecast
        • 9.3.7.1.1. By Value
      • 9.3.7.2. Market Share & Forecast
        • 9.3.7.2.1. By Material
        • 9.3.7.2.2. By Tank Type
        • 9.3.7.2.3. By Application
        • 9.3.7.2.4. By End-user

10. South America Composite Cylinders Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Material
    • 10.2.2. By Tank Type
    • 10.2.3. By Application
    • 10.2.4. By End-user
    • 10.2.5. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Composite Cylinders Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Material
        • 10.3.1.2.2. By Tank Type
        • 10.3.1.2.3. By Application
        • 10.3.1.2.4. By End-user
    • 10.3.2. Colombia Composite Cylinders Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Material
        • 10.3.2.2.2. By Tank Type
        • 10.3.2.2.3. By Application
        • 10.3.2.2.4. By End-user
    • 10.3.3. Argentina Composite Cylinders Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Material
        • 10.3.3.2.2. By Tank Type
        • 10.3.3.2.3. By Application
        • 10.3.3.2.4. By End-user
    • 10.3.4. Chile Composite Cylinders Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Material
        • 10.3.4.2.2. By Tank Type
        • 10.3.4.2.3. By Application
        • 10.3.4.2.4. By End-user

11. Middle East & Africa Composite Cylinders Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Material
    • 11.2.2. By Tank Type
    • 11.2.3. By Application
    • 11.2.4. By End-user
    • 11.2.5. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Composite Cylinders Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Material
        • 11.3.1.2.2. By Tank Type
        • 11.3.1.2.3. By Application
        • 11.3.1.2.4. By End-user
    • 11.3.2. UAE Composite Cylinders Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Material
        • 11.3.2.2.2. By Tank Type
        • 11.3.2.2.3. By Application
        • 11.3.2.2.4. By End-user
    • 11.3.3. South Africa Composite Cylinders Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Material
        • 11.3.3.2.2. By Tank Type
        • 11.3.3.2.3. By Application
        • 11.3.3.2.4. By End-user
    • 11.3.4. Turkey Composite Cylinders Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Material
        • 11.3.4.2.2. By Tank Type
        • 11.3.4.2.3. By Application
        • 11.3.4.2.4. By End-user
    • 11.3.5. Israel Composite Cylinders Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Material
        • 11.3.5.2.2. By Tank Type
        • 11.3.5.2.3. By Application
        • 11.3.5.2.4. By End-user

12. Market Dynamics

  • 12.1. Drivers
  • 12.2. Challenges

13. Market Trends and Developments

14. Company Profiles

  • 14.1. Hexagon Composites ASA
    • 14.1.1. Business Overview
    • 14.1.2. Key Revenue and Financials
    • 14.1.3. Recent Developments
    • 14.1.4. Key Personnel/Key Contact Person
    • 14.1.5. Key Product/Services Offered
  • 14.2. FABER INDUSTRIE SPA
    • 14.2.1. Business Overview
    • 14.2.2. Key Revenue and Financials
    • 14.2.3. Recent Developments
    • 14.2.4. Key Personnel/Key Contact Person
    • 14.2.5. Key Product/Services Offered
  • 14.3. Luxfer Holdings PLC
    • 14.3.1. Business Overview
    • 14.3.2. Key Revenue and Financials
    • 14.3.3. Recent Developments
    • 14.3.4. Key Personnel/Key Contact Person
    • 14.3.5. Key Product/Services Offered
  • 14.4. Worthington Enterprises, Inc
    • 14.4.1. Business Overview
    • 14.4.2. Key Revenue and Financials
    • 14.4.3. Recent Developments
    • 14.4.4. Key Personnel/Key Contact Person
    • 14.4.5. Key Product/Services Offered
  • 14.5. Time Technoplast Ltd.
    • 14.5.1. Business Overview
    • 14.5.2. Key Revenue and Financials
    • 14.5.3. Recent Developments
    • 14.5.4. Key Personnel/Key Contact Person
    • 14.5.5. Key Product/Services Offered
  • 14.6. Beijing Jingcheng Machinery Electric Co,ltd.
    • 14.6.1. Business Overview
    • 14.6.2. Key Revenue and Financials
    • 14.6.3. Recent Developments
    • 14.6.4. Key Personnel/Key Contact Person
    • 14.6.5. Key Product/Services Offered
  • 14.7. Sinoma Science & Technology Co.,Ltd.
    • 14.7.1. Business Overview
    • 14.7.2. Key Revenue and Financials
    • 14.7.3. Recent Developments
    • 14.7.4. Key Personnel/Key Contact Person
    • 14.7.5. Key Product/Services Offered
  • 14.8. Steelhead Composites, Inc.
    • 14.8.1. Business Overview
    • 14.8.2. Key Revenue and Financials
    • 14.8.3. Recent Developments
    • 14.8.4. Key Personnel/Key Contact Person
    • 14.8.5. Key Product/Services Offered
  • 14.9. Aburi Composites.
    • 14.9.1. Business Overview
    • 14.9.2. Key Revenue and Financials
    • 14.9.3. Recent Developments
    • 14.9.4. Key Personnel/Key Contact Person
    • 14.9.5. Key Product/Services Offered
  • 14.10. Supreme Industries Limited.
    • 14.10.1. Business Overview
    • 14.10.2. Key Revenue and Financials
    • 14.10.3. Recent Developments
    • 14.10.4. Key Personnel/Key Contact Person
    • 14.10.5. Key Product/Services Offered

15. Strategic Recommendations

16. About Us & Disclaimer