封面
市场调查报告书
商品编码
1763979

工业废弃物能源工厂市场-全球产业规模、份额、趋势、机会和预测(按技术类型、应用、地区和竞争细分,2020-2030 年)

Industrial Waste-to-Energy Plant Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Technology Type, By Application, By Region, By Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 188 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024年,全球工业废弃物能源化 (WtE) 工厂市场规模为184亿美元,预计到2030年将达到293亿美元,预测期内复合年增长率为7.9%。市场成长主要受工业化和城镇化进程推动,这显着增加了废弃物产生量和对永续处置解决方案的需求。各国政府和各行各业正将WtE技术作为管理工业废弃物和生产再生能源的双重解决方案。包括垃圾掩埋场转移政策、减排指令和再生能源激励措施在内的支持性监管框架,正在促进全球对WtE计画的投资。

市场概览
预测期 2026-2030
2024年市场规模 184亿美元
2030年市场规模 293亿美元
2025-2030 年复合年增长率 7.9%
成长最快的领域 热能技术
最大的市场 北美洲

焚烧、气化和厌氧消化技术的进步正在提高能源回收率、减少排放,从而提高效率和成本效益。向循环经济模式和资源回收的转变也促进了市场扩张,因为废弃物发电系统 (WtE) 可以从废物流中产生电力、热能和生物燃料。此外,强劲的投资流和日益增多的公私合作伙伴关係(尤其是在发展中经济体)正在加速专案部署和基础设施建设。

关键市场驱动因素

政府法规和支持政策

主要市场挑战

高昂的资本和营运成本

主要市场趋势

技术进步推动效率和永续性

目录

第 1 章:产品概述

第二章:研究方法

第三章:执行摘要

第四章:顾客之声

第五章:全球工业废弃物能源工厂市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依技术类型(热能技术、生物技术、物理技术)
    • 按应用(製造业、化学和石化业、食品和饮料加工、纺织业、金属和采矿业、其他)
    • 按地区(北美、欧洲、南美、中东和非洲、亚太地区)
  • 按公司分类(2024)
  • 市场地图

第六章:北美工业废弃物能源工厂市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第七章:欧洲工业废弃物能源工厂市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙

第八章:亚太地区工业废弃物能源回收厂市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第九章:中东和非洲工业废弃物能源工厂市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿联酋
    • 南非

第十章:南美工业废弃物能源工厂市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷

第 11 章:市场动态

  • 驱动程式
  • 挑战

第 12 章:市场趋势与发展

  • 合併与收购(如有)
  • 产品发布(如有)
  • 最新动态

第十三章:公司简介

  • Veolia Environnement SA
  • Suez SA
  • Covanta Holding Corporation
  • Babcock & Wilcox Enterprises, Inc.
  • Hitachi Zosen Inova AG
  • Mitsubishi Heavy Industries, Ltd.
  • Wheelabrator Technologies Inc.
  • China Everbright Environment Group Limited

第 14 章:策略建议

第15章调查会社について・免责事项

简介目录
Product Code: 29804

The Global Industrial Waste-to-Energy (WtE) Plant Market was valued at USD 18.4 billion in 2024 and is projected to reach USD 29.3 billion by 2030, growing at a CAGR of 7.9% during the forecast period. Market growth is primarily driven by rising industrialization and urbanization, which have significantly increased waste generation and the demand for sustainable disposal solutions. Governments and industries are turning to WtE technologies as a dual solution for managing industrial waste and generating renewable energy. Supportive regulatory frameworks, including landfill diversion policies, emission reduction mandates, and renewable energy incentives, are fostering investment in WtE projects globally.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 18.4 Billion
Market Size 2030USD 29.3 Billion
CAGR 2025-20307.9%
Fastest Growing SegmentThermal Technologies
Largest MarketNorth America

Technological progress in incineration, gasification, and anaerobic digestion is enhancing energy recovery rates and reducing emissions, improving both efficiency and cost-effectiveness. The shift toward circular economy models and resource recovery is also contributing to market expansion, as WtE systems allow for the generation of electricity, heat, and biofuels from waste streams. Additionally, strong investment flows and increased public-private partnerships, especially in developing economies, are accelerating project deployment and infrastructure development.

Key Market Drivers

Government Regulations and Supportive Policies

Stringent environmental regulations and favorable policy measures are key drivers propelling the global industrial WtE plant market. Governments worldwide are implementing directives aimed at minimizing landfill dependency, reducing greenhouse gas emissions, and promoting renewable energy integration. These include renewable portfolio standards, landfill diversion mandates, and carbon taxation schemes that encourage the adoption of energy-from-waste solutions.

To further stimulate adoption, various financial incentives-such as feed-in tariffs, tax credits, grants, and concessional loans-are being offered to WtE developers. Countries across the EU have implemented landfill taxes, while nations like China and India are advancing WtE through subsidies aligned with national energy and environmental targets. These policy frameworks are making WtE infrastructure projects more economically viable and appealing to investors.

Key Market Challenges

High Capital and Operational Costs

The development and operation of industrial WtE plants present notable financial challenges. High capital expenditures are required for land acquisition, construction, equipment, emissions control systems, and compliance with regulatory standards. Depending on the chosen technology-be it thermal, biological, or physical-the initial setup costs can be substantial.

Operationally, the complexity of handling diverse and often non-uniform industrial waste streams necessitates pre-treatment, skilled labor, and ongoing maintenance, all of which elevate costs. Moreover, WtE projects often have higher per-unit energy generation costs compared to traditional fossil fuels or other renewable sources such as wind and solar. This cost disparity, combined with long ROI periods, poses a barrier to broader market penetration, particularly in cost-sensitive regions.

Key Market Trends

Technological Advancements Driving Efficiency and Sustainability

Advances in WtE technologies are significantly influencing market evolution. Next-generation thermal processes such as gasification, pyrolysis, and plasma arc gasification are delivering improved energy efficiency and reduced emissions compared to conventional incineration. These innovations support compliance with stricter environmental regulations while enhancing overall plant performance.

Biological technologies like anaerobic digestion are gaining popularity for managing organic industrial waste, generating biogas for electricity, heat, or upgraded biomethane. The integration of digital technologies-including AI, IoT, and data analytics-is transforming operations by enabling predictive maintenance, optimizing combustion processes, and enhancing environmental monitoring. Smart pre-treatment and sorting systems are improving feedstock quality and energy output, aligning with industry goals of efficiency, sustainability, and circular resource utilization.

Key Market Players

  • Veolia Environnement S.A.
  • Suez S.A.
  • Covanta Holding Corporation
  • Babcock & Wilcox Enterprises, Inc.
  • Hitachi Zosen Inova AG
  • Mitsubishi Heavy Industries, Ltd.
  • Wheelabrator Technologies Inc.
  • China Everbright Environment Group Limited

Report Scope:

In this report, the Global Industrial Waste-to-Energy Plant Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Industrial Waste-to-Energy Plant Market, By Technology Type:

  • Thermal Technologies
  • Biological Technologies
  • Physical Technologies

Industrial Waste-to-Energy Plant Market, By Application:

  • Manufacturing
  • Chemical & Petrochemical
  • Food & Beverage Processing
  • Textile Industry
  • Metals & Mining
  • Others

Industrial Waste-to-Energy Plant Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
  • South America
    • Brazil
    • Colombia
    • Argentina
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Industrial Waste-to-Energy Plant Market.

Available Customizations:

Global Industrial Waste-to-Energy Plant Market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Industrial Waste-to-Energy Plant Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Technology Type (Thermal Technologies, Biological Technologies, Physical Technologies)
    • 5.2.2. By Application (Manufacturing, Chemical & Petrochemical, Food & Beverage Processing, Textile Industry, Metals & Mining, Others)
    • 5.2.3. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Industrial Waste-to-Energy Plant Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Technology Type
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Industrial Waste-to-Energy Plant Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Technology Type
        • 6.3.1.2.2. By Application
    • 6.3.2. Canada Industrial Waste-to-Energy Plant Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Technology Type
        • 6.3.2.2.2. By Application
    • 6.3.3. Mexico Industrial Waste-to-Energy Plant Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Technology Type
        • 6.3.3.2.2. By Application

7. Europe Industrial Waste-to-Energy Plant Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Technology Type
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Industrial Waste-to-Energy Plant Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Technology Type
        • 7.3.1.2.2. By Application
    • 7.3.2. France Industrial Waste-to-Energy Plant Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Technology Type
        • 7.3.2.2.2. By Application
    • 7.3.3. United Kingdom Industrial Waste-to-Energy Plant Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Technology Type
        • 7.3.3.2.2. By Application
    • 7.3.4. Italy Industrial Waste-to-Energy Plant Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Technology Type
        • 7.3.4.2.2. By Application
    • 7.3.5. Spain Industrial Waste-to-Energy Plant Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Technology Type
        • 7.3.5.2.2. By Application

8. Asia Pacific Industrial Waste-to-Energy Plant Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Technology Type
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Industrial Waste-to-Energy Plant Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Technology Type
        • 8.3.1.2.2. By Application
    • 8.3.2. India Industrial Waste-to-Energy Plant Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Technology Type
        • 8.3.2.2.2. By Application
    • 8.3.3. Japan Industrial Waste-to-Energy Plant Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Technology Type
        • 8.3.3.2.2. By Application
    • 8.3.4. South Korea Industrial Waste-to-Energy Plant Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Technology Type
        • 8.3.4.2.2. By Application
    • 8.3.5. Australia Industrial Waste-to-Energy Plant Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Technology Type
        • 8.3.5.2.2. By Application

9. Middle East & Africa Industrial Waste-to-Energy Plant Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Technology Type
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Industrial Waste-to-Energy Plant Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Technology Type
        • 9.3.1.2.2. By Application
    • 9.3.2. UAE Industrial Waste-to-Energy Plant Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Technology Type
        • 9.3.2.2.2. By Application
    • 9.3.3. South Africa Industrial Waste-to-Energy Plant Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Technology Type
        • 9.3.3.2.2. By Application

10. South America Industrial Waste-to-Energy Plant Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Technology Type
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Industrial Waste-to-Energy Plant Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Technology Type
        • 10.3.1.2.2. By Application
    • 10.3.2. Colombia Industrial Waste-to-Energy Plant Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Technology Type
        • 10.3.2.2.2. By Application
    • 10.3.3. Argentina Industrial Waste-to-Energy Plant Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Technology Type
        • 10.3.3.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends and Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Veolia Environnement S.A.
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services Offered
  • 13.2. Suez S.A.
  • 13.3. Covanta Holding Corporation
  • 13.4. Babcock & Wilcox Enterprises, Inc.
  • 13.5. Hitachi Zosen Inova AG
  • 13.6. Mitsubishi Heavy Industries, Ltd.
  • 13.7. Wheelabrator Technologies Inc.
  • 13.8. China Everbright Environment Group Limited

14. Strategic Recommendations

15. About Us & Disclaimer