封面
市场调查报告书
商品编码
1812249

微电网储能电池市场-全球产业规模、份额、趋势、机会与预测(细分、按类型、按应用、按地区、按竞争,2020-2030 年)

Energy Storage Battery for Microgrid Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented, By Type, By Application, By Region, By Competition, 2020-2030F

出版日期: | 出版商: TechSci Research | 英文 180 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

2024年,微电网储能电池市场规模为283.1亿美元,预计2030年将达到397.5亿美元,复合年增长率为5.66%。微电网储能电池市场涵盖专门用于储存电能以供微电网系统使用的电池及相关技术。微电网系统是能够独立运作或与主公用电网协同运作的局部电网。这些储能电池是稳定电力供应、管理尖峰需求以及将太阳能、风能和小型水力发电等再生能源整合到微电网中的关键组件。

市场概况
预测期 2026-2030
2024年市场规模 283.1亿美元
2030年市场规模 397.5亿美元
2025-2030年复合年增长率 5.66%
成长最快的领域 VRLA 铅酸蓄电池
最大的市场 北美洲

微电网正越来越多地部署在偏远地区、离网地区和城市地区,以确保可靠、灵活且不间断的电力供应,而储能电池对其运作效率至关重要。市面上涵盖各种电池化学成分,例如锂离子电池、铅酸电池、钠离子电池和液流电池,每种电池在能量密度、寿命、充电效率和环境影响方面都具有独特的优势。微电网中的储能电池提供多种功能,包括负载平衡、频率调节、电压支援以及停电或电网故障期间的备用电源,使其成为工业、商业和住宅环境中关键任务应用不可或缺的能源。

市场驱动力源自于对永续能源日益增长的重视、温室气体排放的减少以及向分散式发电的转型,这使得社区和产业能够减少对传统化石燃料电网的依赖。电池技术的快速发展,包括能量密度、循环寿命、热稳定性和成本效益的提升,正在扩大微电网在已开发地区和发展中地区的部署可行性。此外,促进再生能源整合和储能应用的政策支援、政府激励措施和监管框架正在加速全球市场的成长。

关键市场驱动因素

再生能源的采用率不断上升

主要市场挑战

高初始资本投资和成本限制

主要市场趋势

再生能源整合微电网的采用率不断上升

目录

第 1 章:产品概述

第二章:研究方法

第三章:执行摘要

第四章:顾客之声

第五章:全球微电网储能电池市场展望

  • 市场规模和预测
    • 按价值
  • 市场占有率和预测
    • 依类型(钠硫电池、VRLA 铅酸电池、锂离子电池、其他电池)
    • 按应用(住宅、企业、公用事业)
    • 按地区
  • 按公司分类(2024 年)
  • 市场地图

第六章:北美微电网储能电池市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 北美:国家分析
    • 美国
    • 加拿大
    • 墨西哥

第七章:欧洲微电网储能电池市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 欧洲:国家分析
    • 德国
    • 英国
    • 义大利
    • 法国
    • 西班牙

第八章:亚太地区微电网储能电池市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

第九章:南美洲微电网储能电池市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 南美洲:国家分析
    • 巴西
    • 阿根廷
    • 哥伦比亚

第十章:中东与非洲微电网储能电池市场展望

  • 市场规模和预测
  • 市场占有率和预测
  • 中东和非洲:国家分析
    • 南非
    • 沙乌地阿拉伯
    • 阿联酋
    • 科威特
    • 土耳其

第 11 章:市场动态

  • 驱动程式
  • 挑战

第 12 章:市场趋势与发展

  • 合併与收购(如有)
  • 产品发布(如有)
  • 最新动态

第十三章:公司简介

  • Tesla, Inc.
  • LG Energy Solution Ltd.
  • Panasonic Corporation
  • BYD Company Ltd.
  • Samsung SDI Co., Ltd.
  • Contemporary Amperex Technology Co., Ltd. (CATL)
  • Saft Groupe SA
  • Eaton Corporation plc
  • Johnson Controls International plc
  • ABB Ltd.

第 14 章:策略建议

第15章调查会社について・免责事项

简介目录
Product Code: 30580

The Energy Storage Battery for Microgrid Market was valued at USD 28.31 Billion in 2024 and is expected to reach USD 39.75 Billion by 2030 with a CAGR of 5.66%. The Energy Storage Battery for Microgrid Market refers to the sector encompassing batteries and associated technologies specifically designed to store electrical energy for use in microgrid systems, which are localized grids capable of operating independently or in conjunction with the main utility grid. These energy storage batteries serve as critical components in stabilizing power supply, managing peak demand, and integrating renewable energy sources such as solar, wind, and small-scale hydro into microgrid networks.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 28.31 Billion
Market Size 2030USD 39.75 Billion
CAGR 2025-20305.66%
Fastest Growing SegmentVRLA Lead Acid
Largest MarketNorth America

Microgrids are increasingly being deployed in remote, off-grid, and urban areas to ensure reliable, resilient, and uninterrupted electricity supply, and energy storage batteries are central to their operational efficiency. The market includes various battery chemistries, such as lithium-ion, lead-acid, sodium-ion, and flow batteries, each offering unique advantages in terms of energy density, lifespan, charge/discharge efficiency, and environmental impact. Energy storage batteries in microgrids provide multiple functionalities, including load leveling, frequency regulation, voltage support, and backup power during outages or grid failures, making them indispensable for mission-critical applications in industrial, commercial, and residential settings.

The market is driven by the growing emphasis on sustainable energy, reduction of greenhouse gas emissions, and the transition toward decentralized power generation, which allows communities and industries to reduce dependence on conventional fossil fuel-based grids. Rapid advancements in battery technology, including improvements in energy density, cycle life, thermal stability, and cost-effectiveness, are expanding the feasibility of microgrid deployment in both developed and developing regions. Furthermore, policy support, government incentives, and regulatory frameworks promoting renewable energy integration and energy storage adoption are accelerating market growth globally.

Key Market Drivers

Rising Adoption of Renewable Energy Sources

The energy storage battery market for microgrids is being significantly driven by the rapid global adoption of renewable energy sources such as solar, wind, and small-scale hydropower. As countries strive to meet ambitious decarbonization targets and reduce dependence on fossil fuels, microgrids equipped with energy storage systems are becoming critical to integrate variable renewable energy into local grids. Energy storage batteries enable consistent power supply by balancing intermittent generation, storing excess energy during periods of high production, and discharging it when demand peaks.

The growing deployment of distributed energy resources in residential, commercial, and industrial sectors further enhances the relevance of microgrids, as they provide energy autonomy and resilience against grid disruptions. Governments and utilities are increasingly incentivizing renewable energy integration through subsidies, tax benefits, and regulatory frameworks that support the adoption of microgrid energy storage solutions. Moreover, technological advancements in battery chemistry, including lithium-ion, flow batteries, and solid-state batteries, have improved storage efficiency, cycle life, and cost-effectiveness, making them more suitable for microgrid applications.

This driver is reinforced by increasing awareness of sustainability among businesses and consumers, who prioritize low-carbon and energy-efficient solutions. Energy storage batteries also support ancillary services such as frequency regulation, voltage stabilization, and demand response, which are essential for maintaining grid stability in renewable-heavy systems. Consequently, the synergy between renewable energy growth and energy storage technology adoption is propelling the global market, positioning batteries as indispensable components in modern, decentralized, and resilient energy infrastructures. Globally, renewable energy accounts for over 30% of total electricity generation, with strong year-on-year growth. More than 1,000 GW of solar and wind capacity has been installed worldwide, with expansion accelerating across regions. Around 70% of new power generation projects globally are based on renewable energy technologies. By 2030, more than 10 million new jobs are expected to be created in the renewable energy sector worldwide. Over 100 countries have committed to achieving net-zero emissions, significantly boosting renewable energy adoption.

Key Market Challenges

High Initial Capital Investment and Cost Constraints

One of the primary challenges facing the energy storage battery market for microgrids is the high initial capital expenditure associated with deploying advanced battery systems. Microgrid projects, particularly those incorporating lithium-ion, flow, or other next-generation battery technologies, require substantial upfront investment in energy storage equipment, inverters, control systems, and integration infrastructure. The high cost of raw materials, including lithium, cobalt, and nickel for lithium-ion batteries, further escalates the overall system expense, making it a significant barrier for small and medium enterprises, remote communities, and developing regions seeking reliable microgrid solutions.

In addition, the cost of installation, commissioning, and integration with existing renewable energy sources such as solar, wind, or biomass adds another layer of financial complexity. While operational expenses may be lower over the lifecycle due to efficiency gains and reduced reliance on conventional grid electricity, the long payback periods deter potential investors and project developers who prioritize rapid returns. Moreover, financing options in emerging markets are often limited, and the lack of government-backed incentives or subsidies in certain regions exacerbates the challenge. The variability of electricity tariffs, coupled with fluctuating demand patterns in off-grid or semi-grid applications, further complicates the economic viability of microgrid projects.

Additionally, the lifecycle cost of batteries, including maintenance, replacement, and recycling, can be unpredictable and depends on usage intensity, ambient environmental conditions, and depth of discharge cycles, making long-term financial planning difficult. The uncertainty around regulatory frameworks, tariffs, and grid integration policies in different countries can also impact the willingness of utilities and private investors to adopt microgrid energy storage solutions. This combination of high upfront costs, operational uncertainties, and financial risk creates a significant barrier to large-scale adoption, particularly in regions where energy demand is growing but capital availability is constrained.

Key Market Trends

Rising Adoption of Renewable Energy-Integrated Microgrids

The Energy Storage Battery for Microgrid Market is witnessing a significant trend driven by the accelerated adoption of renewable energy sources, particularly solar and wind, in microgrid systems globally. As energy demand grows and sustainability objectives become a central focus for governments, utilities, and private enterprises, integrating renewable energy into microgrids is increasingly recognized as a strategic solution to reduce dependency on fossil fuels and enhance grid resilience.

Renewable-integrated microgrids rely heavily on energy storage batteries to manage variability in energy generation, ensuring a steady, reliable supply of power even when intermittent sources like solar and wind fluctuate due to weather or seasonal changes. This trend is particularly pronounced in regions with high renewable energy potential, such as Asia-Pacific, North America, and parts of Europe, where governments are promoting decarbonization targets and providing incentives for clean energy adoption.

Energy storage batteries in microgrids facilitate load balancing, peak shaving, and energy arbitrage, allowing operators to optimize energy usage and reduce operational costs while maintaining a sustainable footprint. Technological advancements in lithium-ion, flow, and sodium-ion batteries are enabling higher energy density, longer cycle life, and faster response times, which are critical for microgrid applications that demand reliability and scalability. Additionally, industries such as healthcare, manufacturing, and telecommunications are increasingly investing in microgrid solutions with integrated storage to ensure uninterrupted power supply, highlighting a growing commercial use case.

Large-scale deployment of energy storage in renewable microgrids is also enhancing energy security in remote and off-grid areas, allowing communities to access reliable power without reliance on centralized grids. The combination of renewable energy adoption and advanced battery technology is creating opportunities for manufacturers, project developers, and technology providers to offer integrated solutions that support energy efficiency, sustainability, and operational optimization.

Furthermore, as global energy policies increasingly emphasize decarbonization and smart grid development, the demand for energy storage batteries in microgrids is expected to accelerate, driving innovation in battery chemistry, system integration, and control strategies. This trend reinforces the market's long-term growth trajectory by highlighting the strategic role of energy storage in enabling renewable energy adoption and creating resilient, flexible, and cost-effective microgrid solutions across diverse applications.

Key Market Players

  • Tesla, Inc.
  • LG Energy Solution Ltd.
  • Panasonic Corporation
  • BYD Company Ltd.
  • Samsung SDI Co., Ltd.
  • Contemporary Amperex Technology Co., Ltd. (CATL)
  • Saft Groupe S.A.
  • Eaton Corporation plc
  • Johnson Controls International plc
  • ABB Ltd.

Report Scope:

In this report, the Global Energy Storage Battery for Microgrid Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Energy Storage Battery for Microgrid Market, By Type:

  • Sodium-Sulfur Battery
  • VRLA Lead Acid
  • Lithium-Ion
  • Others

Energy Storage Battery for Microgrid Market, By Application:

  • Residential
  • Enterprise
  • Utility

Energy Storage Battery for Microgrid Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE
    • Kuwait
    • Turkey

Competitive Landscape

Company Profiles: Detailed analysis of the major companies presents in the Global Energy Storage Battery for Microgrid Market.

Available Customizations:

Global Energy Storage Battery for Microgrid Market report with the given Market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional Market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Energy Storage Battery for Microgrid Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Sodium-Sulfur Battery, VRLA Lead Acid, Lithium-Ion, Others)
    • 5.2.2. By Application (Residential, Enterprise, Utility)
    • 5.2.3. By Region
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America Energy Storage Battery for Microgrid Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Energy Storage Battery for Microgrid Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
    • 6.3.2. Canada Energy Storage Battery for Microgrid Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
    • 6.3.3. Mexico Energy Storage Battery for Microgrid Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application

7. Europe Energy Storage Battery for Microgrid Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Energy Storage Battery for Microgrid Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
    • 7.3.2. United Kingdom Energy Storage Battery for Microgrid Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
    • 7.3.3. Italy Energy Storage Battery for Microgrid Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
    • 7.3.4. France Energy Storage Battery for Microgrid Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
    • 7.3.5. Spain Energy Storage Battery for Microgrid Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application

8. Asia-Pacific Energy Storage Battery for Microgrid Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Energy Storage Battery for Microgrid Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
    • 8.3.2. India Energy Storage Battery for Microgrid Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
    • 8.3.3. Japan Energy Storage Battery for Microgrid Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application
    • 8.3.4. South Korea Energy Storage Battery for Microgrid Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Application
    • 8.3.5. Australia Energy Storage Battery for Microgrid Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Application

9. South America Energy Storage Battery for Microgrid Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Energy Storage Battery for Microgrid Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
    • 9.3.2. Argentina Energy Storage Battery for Microgrid Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
    • 9.3.3. Colombia Energy Storage Battery for Microgrid Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application

10. Middle East and Africa Energy Storage Battery for Microgrid Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By Country
  • 10.3. Middle East and Africa: Country Analysis
    • 10.3.1. South Africa Energy Storage Battery for Microgrid Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
    • 10.3.2. Saudi Arabia Energy Storage Battery for Microgrid Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
    • 10.3.3. UAE Energy Storage Battery for Microgrid Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application
    • 10.3.4. Kuwait Energy Storage Battery for Microgrid Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Application
    • 10.3.5. Turkey Energy Storage Battery for Microgrid Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. Tesla, Inc.
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. LG Energy Solution Ltd.
  • 13.3. Panasonic Corporation
  • 13.4. BYD Company Ltd.
  • 13.5. Samsung SDI Co., Ltd.
  • 13.6. Contemporary Amperex Technology Co., Ltd. (CATL)
  • 13.7. Saft Groupe S.A.
  • 13.8. Eaton Corporation plc
  • 13.9. Johnson Controls International plc
  • 13.10. ABB Ltd.

14. Strategic Recommendations

15. About Us & Disclaimer