封面
市场调查报告书
商品编码
1914607

汽车人工智慧(AI)市场-全球产业规模、份额、趋势、机会及预测(按组件、技术、工艺、应用、车辆类型、需求类别、地区和竞争格局划分,2021-2031)

Automotive Artificial Intelligence, Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Technology, By Process, By Application, By Vehicle Type, By Demand Category, By Region & Competition, 2021-2031F

出版日期: | 出版商: TechSci Research | 英文 185 Pages | 商品交期: 2-3个工作天内

价格

We offer 8 hour analyst time for an additional research. Please contact us for the details.

简介目录

全球汽车人工智慧 (AI) 市场预计将从 2025 年的 48.8 亿美元成长到 2031 年的 202.2 亿美元,复合年增长率为 26.73%。

该领域涉及将机器学习演算法、电脑视觉和数据分析技术整合到车辆中,以实现自动驾驶、预测性维护和智慧车载功能。其成长主要受严格的安全法规驱动,这些法规强制要求配备高级驾驶辅助系统 (ADAS),以及产业向需要持续更新的软体定义架构转型。为了说明对智慧软体的依赖性,汽车製造商和英国协会 (SMMT) 的报告显示,到 2024 年,83.6% 的新车将能够配备驾驶辅助技术。

市场概览
预测期 2027-2031
市场规模:2025年 48.8亿美元
市场规模:2031年 202.2亿美元
复合年增长率:2026-2031年 26.73%
成长最快的细分市场 深度学习
最大的市场 北美洲

儘管取得了这些进展,但市场仍面临着与网路安全和资料管治复杂性相关的重大障碍。随着汽车逐渐演变为能够处理大量个人和环境数据以改进人工智慧模型的互联设备,如何在遵守各项国际隐私法规的同时保护汽车免受网路威胁,对製造商而言是一项技术难度高且成本高昂的挑战。在业界努力平衡创新与合规性的过程中,确保强大的资料保护仍然是阻碍市场进一步扩张的一大障碍。

市场驱动因素

向软体定义汽车的转型需要整合高性能人工智慧运算,以控制中央电子单元并实现流畅的空中升级。随着汽车製造商将软体和硬体分离,人工智慧对于推动功能升级和管理未来车队中复杂的区域架构至关重要,这将迫使传统製造商在专有软体方面投入巨资,以与数位原生企业竞争。大众汽车集团与Rivian于2024年6月宣布成立的合资企业清晰地体现了这一趋势。这家汽车巨头承诺投资高达50亿美元,用于共同开发下一代软体定义平台,凸显了其对以软体为中心的出行解决方案的高度重视。

同时,对自动驾驶和半自动驾驶能力的追求正在加速深度学习模型的应用,这些模型能够解读即时感测器数据。车辆在无需人为干预的情况下在城市环境中行驶的能力完全依赖于电脑视觉和决策演算法的成熟度,而这些演算法如今正逐步走向商业化。例如,Waymo在2024年8月的一篇部落格报导中宣布,其自动驾驶出行服务已达到每週超过10万次付费行程的里程碑,证明了人工智慧驱动驾驶的可行性。此外,支援这些系统的底层软体也在全球范围内不断扩展。 2024年,黑莓宣布,其安全认证的QNX软体(为众多ADAS(高级驾驶辅助系统)和数位驾驶座系统提供支援)目前已在全球超过2.35亿辆汽车中部署。

市场挑战

网路安全和资料管治的复杂性对全球汽车人工智慧 (AI) 市场的成长构成了重大障碍。随着汽车发展成为处理海量资料集的超互联节点,它们也成为网路攻击的主要目标,需要复杂的防御机制。这不可避免地会延缓研发週期。製造商面临着保护 AI 模型免受恶意攻击的技术挑战,同时也要应对错综复杂的国际隐私法律。这种双重压力迫使汽车公司将大量资金和工程人才从 AI 创新转移到合规和安全保障,从而减缓了市场发展势头。

这种日益加重的营运负担体现在为保障车辆网路安全而需要加强的产业协作。 2024年,汽车资讯共用与分析中心(Auto-ISAC)报告称,首席资讯安全安全官(CISO)执行工作小组的参与人数同比增长20%,凸显了重新分配领导资源以应对这些漏洞的至关重要性。这种必要的防御态势限制了製造商实现下一代人工智慧功能商业化和部署的速度。

市场趋势

将生成式人工智慧整合到高级个人助理中,正从根本上重塑车载使用者体验,将语音命令系统转变为直觉的对话式介面。与受限于固定脚本的传统系统不同,这些基于大规模语言模型的解决方案利用深度语义理解来处理自然语音、管理复杂查询,并具备情境感知能力来控制车辆功能。这项技术使驾驶员能够像与智慧伙伴互动一样与车辆互动,车辆能够朗读调查内容并透过对话管理导航。例如,大众汽车在2024年1月的新闻稿中宣布,它将成为首家从2024年第二季度开始在其量产车型中将ChatGPT作为标准配置的大规模生产汽车製造商,这便是该技术快速部署的一个例证。

同时,人工智慧驱动的数位双胞胎技术在製造业领域的应用正在革新汽车生产,实现数据驱动、超高效的工厂运作。透过建立实体组装和供应链的即时虚拟副本,製造商可以模拟生产场景、优化工作流程,并在瓶颈影响实际生产之前将其识别出来。这种工业元宇宙方法能够精确监控设备和能源消耗,显着降低废弃物和营运成本,并加快产品上市速度。例如,雷诺集团在2024年11月的一篇报导中指出,自2019年以来,该公司已在300多个计划中应用了数位双胞胎技术,累计节省成本达7亿欧元。

目录

第一章概述

第二章调查方法

第三章执行摘要

第四章:客户评价

第五章:全球汽车人工智慧(AI)市场展望

  • 市场规模及预测
    • 按金额
  • 市占率及预测
    • 按组件(硬体、软体、服务)
    • 透过科技(深度学习、机器学习、情境察觉、电脑视觉、自然语言处理等)
    • 按过程(讯号辨识、影像识别、资料探勘)
    • 按应用领域(人机互动、半自动驾驶、自动驾驶)
    • 依车辆类型(乘用车与商用车)划分
    • 依需求类别(OEM 与售后市场)
    • 按地区
    • 按公司(2025 年)
  • 市场地图

6. 北美汽车人工智慧(AI)市场展望

  • 市场规模及预测
  • 市占率及预测
  • 北美洲:国家分析
    • 美国
    • 加拿大
    • 墨西哥

7. 欧洲汽车人工智慧(AI)市场展望

  • 市场规模及预测
  • 市占率及预测
  • 欧洲:国家分析
    • 德国
    • 法国
    • 英国
    • 义大利
    • 西班牙

8. 亚太地区汽车人工智慧(AI)市场展望

  • 市场规模及预测
  • 市占率及预测
  • 亚太地区:国家分析
    • 中国
    • 印度
    • 日本
    • 韩国
    • 澳洲

9. 中东和非洲汽车人工智慧(AI)市场展望

  • 市场规模及预测
  • 市占率及预测
  • 中东和非洲:国家分析
    • 沙乌地阿拉伯
    • 阿拉伯聯合大公国
    • 南非

第十章:南美汽车人工智慧(AI)市场展望

  • 市场规模及预测
  • 市占率及预测
  • 南美洲:国家分析
    • 巴西
    • 哥伦比亚
    • 阿根廷

第十一章 市场动态

  • 司机
  • 任务

第十二章 市场趋势与发展

  • 併购
  • 产品发布
  • 最新进展

第十三章 全球汽车人工智慧(AI)市场:SWOT分析

第十四章:波特五力分析

  • 产业竞争
  • 新进入者的可能性
  • 供应商电力
  • 顾客权力
  • 替代品的威胁

第十五章 竞争格局

  • NVIDIA Corporation
  • Tesla, Inc.
  • Waymo LLC
  • Intel Corporation
  • Qualcomm Technologies, Inc.
  • Robert Bosch GmbH
  • Aptiv PLC
  • Continental AG
  • Microsoft Corporation
  • Toyota Motor Corporation

第十六章 策略建议

第十七章:关于研究公司及免责声明

简介目录
Product Code: 1331

The Global Automotive Artificial Intelligence (AI) Market is projected to expand from USD 4.88 Billion in 2025 to USD 20.22 Billion by 2031, reflecting a compound annual growth rate of 26.73%. This sector encompasses the incorporation of machine learning algorithms, computer vision, and data analytics into vehicles to facilitate autonomous driving, predictive maintenance, and intelligent in-cabin features. Growth is primarily stimulated by strict safety regulations mandating Advanced Driver-Assistance Systems (ADAS) and the industry's pivot toward software-defined architectures that require continuous updates. Highlighting this reliance on intelligent software, the Society of Motor Manufacturers and Traders reported that in 2024, 83.6% of new automobiles were available with driver assistance technologies.

Market Overview
Forecast Period2027-2031
Market Size 2025USD 4.88 Billion
Market Size 2031USD 20.22 Billion
CAGR 2026-203126.73%
Fastest Growing SegmentDeep Learning
Largest MarketNorth America

Despite these advancements, the market faces a substantial hurdle regarding the complexities of cybersecurity and data governance. As automobiles transform into connected devices processing vast amounts of personal and environmental data to refine AI models, securing them against cyber threats while complying with disparate international privacy regulations proves to be a technically demanding and expensive challenge for manufacturers. Ensuring robust data protection remains a critical obstacle impeding broader market expansion as the industry strives to balance innovation with compliance.

Market Driver

The transition toward software-defined vehicles requires the integration of high-performance AI computing to control centralized electronic units and enable smooth over-the-air updates. As automakers separate software from hardware, AI becomes critical for facilitating feature upgrades and overseeing complex zonal architectures in future fleets, forcing legacy manufacturers to invest heavily in proprietary software to rival digital-native competitors. This trend is exemplified by the Volkswagen Group's June 2024 announcement regarding its joint venture with Rivian, where the automotive giant pledged up to $5 billion to codevelop next-generation software-defined platforms, emphasizing the significant financial prioritization of software-centric mobility solutions.

Concurrently, the push for autonomous and semi-autonomous capabilities is accelerating the adoption of deep learning models capable of interpreting real-time sensor data. A vehicle's ability to navigate urban environments without human intervention depends entirely on the maturity of computer vision and decision-making algorithms, which are now reaching commercial scale. For instance, Waymo reported in an August 2024 blog post that its autonomous ride-hailing service had achieved a milestone of over 100,000 paid trips weekly, proving the viability of AI-piloted transport. Furthermore, the foundational software supporting these systems is expanding globally; BlackBerry Limited noted in 2024 that its safety-certified QNX software, utilized in many ADAS and digital cockpit systems, is now embedded in over 235 million vehicles worldwide.

Market Challenge

The intricate nature of cybersecurity and data governance presents a significant barrier to the growth of the Global Automotive Artificial Intelligence (AI) Market. As vehicles evolve into hyper-connected nodes processing immense datasets, they become prime targets for cyberattacks, necessitating complex defense mechanisms that inevitably slow down development cycles. Manufacturers are burdened with the technical challenge of securing AI models against adversarial threats while simultaneously navigating a labyrinth of fragmented international privacy laws. This dual pressure compels automotive companies to divert significant capital and engineering talent from AI innovation toward compliance and security assurance, thereby retarding market momentum.

The escalating scale of this operational burden is evident in the industry's intensified collaborative efforts to secure vehicle networks. In 2024, the Automotive Information Sharing and Analysis Center (Auto-ISAC) reported a 20% increase in participation within its Chief Information Security Officer (CISO) Executive Working Group compared to the previous year, highlighting the critical reallocation of leadership resources to address these vulnerabilities. This necessary defensive posture limits the speed at which manufacturers can successfully monetize and deploy next-generation AI features.

Market Trends

The integration of Generative AI for Advanced Personal Assistants is fundamentally reshaping the in-cabin user experience by transforming voice command systems into intuitive, conversational interfaces. Unlike legacy systems restricted to rigid scripts, these large language model-based solutions utilize deep semantic understanding to process natural speech, manage complex queries, and control vehicle functions with context awareness. This technology allows drivers to interact with their vehicles as intelligent companions capable of reading research content or managing navigation through dialogue. Illustrating this rapid deployment, Volkswagen announced in a January 2024 press release that it would be the first volume automaker to offer ChatGPT as a standard feature in production vehicles starting in the second quarter of 2024.

Simultaneously, the development of AI-Powered Digital Twins for Manufacturing is revolutionizing automotive production by enabling data-driven, hyper-efficient factory operations. By constructing real-time virtual replicas of physical assembly lines and supply chains, manufacturers can simulate production scenarios and optimize workflows to identify bottlenecks before they impact actual output. This industrial metaverse approach allows for precise monitoring of equipment and energy consumption, significantly reducing waste and operational costs while accelerating time-to-market. Highlighting the efficacy of this trend, Renault Group reported in a November 2024 article that its deployment of digital twin technologies across over 300 projects has yielded cumulative savings of €700 million since 2019.

Key Market Players

  • NVIDIA Corporation
  • Tesla, Inc.
  • Waymo LLC
  • Intel Corporation
  • Qualcomm Technologies, Inc.
  • Robert Bosch GmbH
  • Aptiv PLC
  • Continental AG
  • Microsoft Corporation
  • Toyota Motor Corporation

Report Scope

In this report, the Global Automotive Artificial Intelligence (AI) Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Automotive Artificial Intelligence (AI) Market, By Component

  • Hardware
  • Software
  • Service

Automotive Artificial Intelligence (AI) Market, By Technology

  • Deep Learning
  • Machine Learning
  • Context Awareness
  • Computer Vision
  • Natural Language Processing
  • Others

Automotive Artificial Intelligence (AI) Market, By Process

  • Signal Recognition
  • Image Recognition
  • Data Mining

Automotive Artificial Intelligence (AI) Market, By Application

  • Human-Machine Interface
  • Semi-autonomous Driving
  • Autonomous Driving

Automotive Artificial Intelligence (AI) Market, By Vehicle Type

  • Passenger Cars v/s Commercial Vehicles

Automotive Artificial Intelligence (AI) Market, By Demand Category

  • OEM v/s Aftermarket

Automotive Artificial Intelligence (AI) Market, By Region

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • France
    • United Kingdom
    • Italy
    • Germany
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
  • South America
    • Brazil
    • Argentina
    • Colombia
  • Middle East & Africa
    • South Africa
    • Saudi Arabia
    • UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Automotive Artificial Intelligence (AI) Market.

Available Customizations:

Global Automotive Artificial Intelligence (AI) Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, Trends

4. Voice of Customer

5. Global Automotive Artificial Intelligence (AI) Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Hardware, Software, Service)
    • 5.2.2. By Technology (Deep Learning, Machine Learning, Context Awareness, Computer Vision, Natural Language Processing, Others)
    • 5.2.3. By Process (Signal Recognition, Image Recognition, Data Mining)
    • 5.2.4. By Application (Human-Machine Interface, Semi-autonomous Driving, Autonomous Driving)
    • 5.2.5. By Vehicle Type (Passenger Cars v/s Commercial Vehicles)
    • 5.2.6. By Demand Category (OEM v/s Aftermarket)
    • 5.2.7. By Region
    • 5.2.8. By Company (2025)
  • 5.3. Market Map

6. North America Automotive Artificial Intelligence (AI) Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Technology
    • 6.2.3. By Process
    • 6.2.4. By Application
    • 6.2.5. By Vehicle Type
    • 6.2.6. By Demand Category
    • 6.2.7. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Automotive Artificial Intelligence (AI) Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Technology
        • 6.3.1.2.3. By Process
        • 6.3.1.2.4. By Application
        • 6.3.1.2.5. By Vehicle Type
        • 6.3.1.2.6. By Demand Category
    • 6.3.2. Canada Automotive Artificial Intelligence (AI) Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Technology
        • 6.3.2.2.3. By Process
        • 6.3.2.2.4. By Application
        • 6.3.2.2.5. By Vehicle Type
        • 6.3.2.2.6. By Demand Category
    • 6.3.3. Mexico Automotive Artificial Intelligence (AI) Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Technology
        • 6.3.3.2.3. By Process
        • 6.3.3.2.4. By Application
        • 6.3.3.2.5. By Vehicle Type
        • 6.3.3.2.6. By Demand Category

7. Europe Automotive Artificial Intelligence (AI) Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Technology
    • 7.2.3. By Process
    • 7.2.4. By Application
    • 7.2.5. By Vehicle Type
    • 7.2.6. By Demand Category
    • 7.2.7. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Technology
        • 7.3.1.2.3. By Process
        • 7.3.1.2.4. By Application
        • 7.3.1.2.5. By Vehicle Type
        • 7.3.1.2.6. By Demand Category
    • 7.3.2. France Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Technology
        • 7.3.2.2.3. By Process
        • 7.3.2.2.4. By Application
        • 7.3.2.2.5. By Vehicle Type
        • 7.3.2.2.6. By Demand Category
    • 7.3.3. United Kingdom Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Technology
        • 7.3.3.2.3. By Process
        • 7.3.3.2.4. By Application
        • 7.3.3.2.5. By Vehicle Type
        • 7.3.3.2.6. By Demand Category
    • 7.3.4. Italy Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Technology
        • 7.3.4.2.3. By Process
        • 7.3.4.2.4. By Application
        • 7.3.4.2.5. By Vehicle Type
        • 7.3.4.2.6. By Demand Category
    • 7.3.5. Spain Automotive Artificial Intelligence (AI) Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Technology
        • 7.3.5.2.3. By Process
        • 7.3.5.2.4. By Application
        • 7.3.5.2.5. By Vehicle Type
        • 7.3.5.2.6. By Demand Category

8. Asia Pacific Automotive Artificial Intelligence (AI) Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Technology
    • 8.2.3. By Process
    • 8.2.4. By Application
    • 8.2.5. By Vehicle Type
    • 8.2.6. By Demand Category
    • 8.2.7. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Technology
        • 8.3.1.2.3. By Process
        • 8.3.1.2.4. By Application
        • 8.3.1.2.5. By Vehicle Type
        • 8.3.1.2.6. By Demand Category
    • 8.3.2. India Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Technology
        • 8.3.2.2.3. By Process
        • 8.3.2.2.4. By Application
        • 8.3.2.2.5. By Vehicle Type
        • 8.3.2.2.6. By Demand Category
    • 8.3.3. Japan Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Technology
        • 8.3.3.2.3. By Process
        • 8.3.3.2.4. By Application
        • 8.3.3.2.5. By Vehicle Type
        • 8.3.3.2.6. By Demand Category
    • 8.3.4. South Korea Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Technology
        • 8.3.4.2.3. By Process
        • 8.3.4.2.4. By Application
        • 8.3.4.2.5. By Vehicle Type
        • 8.3.4.2.6. By Demand Category
    • 8.3.5. Australia Automotive Artificial Intelligence (AI) Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Technology
        • 8.3.5.2.3. By Process
        • 8.3.5.2.4. By Application
        • 8.3.5.2.5. By Vehicle Type
        • 8.3.5.2.6. By Demand Category

9. Middle East & Africa Automotive Artificial Intelligence (AI) Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Technology
    • 9.2.3. By Process
    • 9.2.4. By Application
    • 9.2.5. By Vehicle Type
    • 9.2.6. By Demand Category
    • 9.2.7. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia Automotive Artificial Intelligence (AI) Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Technology
        • 9.3.1.2.3. By Process
        • 9.3.1.2.4. By Application
        • 9.3.1.2.5. By Vehicle Type
        • 9.3.1.2.6. By Demand Category
    • 9.3.2. UAE Automotive Artificial Intelligence (AI) Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Technology
        • 9.3.2.2.3. By Process
        • 9.3.2.2.4. By Application
        • 9.3.2.2.5. By Vehicle Type
        • 9.3.2.2.6. By Demand Category
    • 9.3.3. South Africa Automotive Artificial Intelligence (AI) Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Technology
        • 9.3.3.2.3. By Process
        • 9.3.3.2.4. By Application
        • 9.3.3.2.5. By Vehicle Type
        • 9.3.3.2.6. By Demand Category

10. South America Automotive Artificial Intelligence (AI) Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Technology
    • 10.2.3. By Process
    • 10.2.4. By Application
    • 10.2.5. By Vehicle Type
    • 10.2.6. By Demand Category
    • 10.2.7. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Automotive Artificial Intelligence (AI) Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Technology
        • 10.3.1.2.3. By Process
        • 10.3.1.2.4. By Application
        • 10.3.1.2.5. By Vehicle Type
        • 10.3.1.2.6. By Demand Category
    • 10.3.2. Colombia Automotive Artificial Intelligence (AI) Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Technology
        • 10.3.2.2.3. By Process
        • 10.3.2.2.4. By Application
        • 10.3.2.2.5. By Vehicle Type
        • 10.3.2.2.6. By Demand Category
    • 10.3.3. Argentina Automotive Artificial Intelligence (AI) Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Technology
        • 10.3.3.2.3. By Process
        • 10.3.3.2.4. By Application
        • 10.3.3.2.5. By Vehicle Type
        • 10.3.3.2.6. By Demand Category

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Global Automotive Artificial Intelligence (AI) Market: SWOT Analysis

14. Porter's Five Forces Analysis

  • 14.1. Competition in the Industry
  • 14.2. Potential of New Entrants
  • 14.3. Power of Suppliers
  • 14.4. Power of Customers
  • 14.5. Threat of Substitute Products

15. Competitive Landscape

  • 15.1. NVIDIA Corporation
    • 15.1.1. Business Overview
    • 15.1.2. Products & Services
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel
    • 15.1.5. SWOT Analysis
  • 15.2. Tesla, Inc.
  • 15.3. Waymo LLC
  • 15.4. Intel Corporation
  • 15.5. Qualcomm Technologies, Inc.
  • 15.6. Robert Bosch GmbH
  • 15.7. Aptiv PLC
  • 15.8. Continental AG
  • 15.9. Microsoft Corporation
  • 15.10. Toyota Motor Corporation

16. Strategic Recommendations

17. About Us & Disclaimer