封面
市场调查报告书
商品编码
1496130

数位造船厂市场:现况分析与预测(2024-2032)

Digital Shipyard Market: Current Analysis and Forecast (2024-2032)

出版日期: | 出版商: UnivDatos Market Insights Pvt Ltd | 英文 138 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

由于先进製造技术在造船过程中的全球传播,数位化造船厂市场预计将以约18.10%的复合年增长率成长。数位造船厂利用先进的软体、数据分析和自动化来简化从设计到建造的各种流程。此外,数位化造船厂采用先进的电脑辅助设计(CAD)和电脑辅助工程(CAE)工具来实现更有效率、更准确的船舶设计和建模。这些技术可以实现船舶性能模拟,减少对实体原型的需求并缩短开发时间。例如,American Bureau of Shipping (ABS) 进行的一项研究发现,与传统方法相比,数位化造船厂可以减少高达 50% 的设计和工程时间。此外,数位化造船厂正在采用先进的感测器、物联网 (IoT) 设备和虚拟实境 (VR) 技术来增强品质控制和检验流程。这些技术可以即时监控关键组件并及早发现潜在问题,从而降低昂贵的维修和延误的风险。例如,国际海事组织的一项研究发现,使用数位品质控制方法可以减少 20-30% 的返工和缺陷。此外,数位化造船厂正在利用预测性维护和生命週期管理解决方案来优化船舶维护和保养。这包括使用感测器、数据分析和机器学习来预测和预防设备故障,减少停机时间和维护成本。例如,International Classification Society的一项研究表明,采用数位化维护解决方案可以降低维护成本10-20%,并提高资产可用性5-10%。这些因素正在改善环境并推动数位造船厂在全球造船业的采用。

根据造船厂类型,市场分为商业和军事。军用造船厂处于采用 3D 建模、模拟和自动化等尖端数位技术来简化造船和维修流程的前沿。提高军用船舶生产效率、精度和安全性的需求已成为推动这些造船厂数位转型的关键因素。此外,军舰需要遵守严格的品质和安全标准,需要使用先进的数位工具和流程。数位化船厂技术使军用船厂能够保持严格的品质控制,进行虚拟测试,并确保船舶的整体完整性。此外,航空母舰、潜艇和新型水面舰艇等高度专业化和技术先进的军舰的建造正在推动对数位化造船厂解决方案的需求。这些复杂的船舶需要精确的规划、协调和执行,并且可以使用数位技术更好地管理。最后,工业工业物联网和人工智慧技术的整合正在提高商业造船厂的营运效率、减少停机时间并增强预测性维护。这些技术对于军用造船厂的发展也至关重要。除此之外,这些进步极大地促进了军事造船厂采用数位造船。

根据技术平台,市场分为 RPA、AM、AI/大数据分析、数位孪生、区块链、IIoT 等。IIoT、3D 建模、扫瞄、列印、数位孪生、人工智慧和大数据分析在数位造船厂的保护下一起使用。推动这种采用的主要因素包括实现营运效率的需要。物联网、数位孪生和人工智慧等技术可以简化营运、减少体力劳动并提高生产力。此外,预测性维护等应用可以防止代价高昂的故障,而 3D 列印技术的使用可以减少材料浪费。此外,透过整合这些技术,造船厂可以透过自动化劳动密集型任务、最大限度地减少体力劳动的需求并提高资源利用率来降低营运成本。这些解决方案的成本效益使其成为寻求优化财务绩效的造船厂营运商的有吸引力的选择。这些因素是推动全球主要造船厂采用积层製造、人工智慧和大数据分析、数位孪生和工业物联网的主要原因。

根据数位化水准,市场分为全数位化船厂、半数位化船厂和部分数位化船厂。半数位化造船厂成为行业参与者中的领先选择。半数位化船厂平衡传统运作方式与数位技术,逐步过渡到全数位化。这种分阶段的方法允许造船厂利用数位工具,同时受益于现有的专业知识和基础设施,使其成为许多营运商的可行选择。此外,半数位化造船厂具有高度灵活性和适应性,可让您根据特定的营运要求和课题客製化数位解决方案。此外,半数位化造船厂将透过为渐进式数位化扩展和创新奠定基础,实现可扩展并面向未来。这种可扩展性使造船厂能够根据市场动态、新兴技术和不断变化的客户需求调整其数位足迹,确保长期相关性和竞争力。除其他因素外,这些因素促使半数位化造船厂越来越受欢迎,成为业界参与者中最可行的选择。

为了更瞭解数位化造船厂的市场采用情况,市场包括北美(美国、加拿大、北美其他地区)、欧洲(德国、英国、法国、西班牙、义大利、欧洲其他地区)、亚太地区(中国、日本) ,根据印度、澳洲、世界其他地区(亚太地区)和世界其他地区的全球影响力进行分析。无论是在市场占有率还是收入方面,北美都正在成为数位造船厂领域的领跑者。北美在创新和采用方面处于领先地位,在造船厂营运中利用 RPA、人工智慧、物联网和大数据分析等先进数位工具。此外,该地区也是着名造船公司、行业专家和技术先驱的所在地,他们在数位创新和製定最佳实践的行业标准方面处于领先地位。北美造船厂处于数位化造船厂发展的前沿,展示了数位孪生技术、智慧製造和海事营运网路安全等领域的专业知识。此外,该地区造船商、技术公司、研究机构和政府机构之间强大的伙伴关係和合作网络正在推动数位造船厂生态系统的创新和知识交流。特别是,我们与北美领先的造船厂和技术巨头的合作伙伴关係促进了针对海事行业需求的尖端数位解决方案的开发。这些因素结合起来,为北美数位造船业的蓬勃发展并在其他地区占据领导地位创造了完美的环境。

在该市场运营的一些主要公司包括 IFS、Pemamek、Dassault Systemes、BAE Systems、Altair Engineering Inc.、AVEVA Group Limited、Wartsila、KUKA AG、Damen Shipyards Group 和 PROSTEP AG。

目录

第1章 市场介绍

  • 市场定义
  • 主要目标
  • 利益相关者
  • 限制

第2章 研究方法或前提条件

  • 调查过程
  • 调查方法
  • 受访者简介

第3章 执行摘要

第4章 市场动态

  • 促进因素
  • 机会
  • 抑制因素
  • 趋势
  • PESTEL 分析
  • 需求面分析
  • 供给侧分析
    • 併购
    • 投资场景
    • 产业洞察:主要新创公司及其独特策略

第5章 价格分析

  • 区域价格分析
  • 影响价格的因素

第6章 全球数位造船厂市场收入,2022-2032

第7章 市场分析:依船厂类型

  • 商业的
  • 军队

第8章 市场分析:依技术平台

  • RPA
  • AM
  • 人工智慧/大数据分析
  • 数位孪生
  • 区块链
  • 物联网
  • 其他(网路安全、云端主资料管理)

第9章 市场分析:依数位化水准

  • 全数位化
  • 半数字
  • 部分数位化

第10章 市场分析:依地区

  • 北美
    • 美国
    • 加拿大
    • 其他北美
  • 欧洲
    • 德国
    • 英国
    • 法国
    • 义大利
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 日本
    • 印度
    • 澳大利亚
    • 亚太其他地区
  • 世界其他地区

第11章 价值链分析

  • 边际分析
  • 进入市场的企业名单

第12章 竞争格局

  • 比赛仪表板
  • 竞争市场定位分析
  • 波特五力分析

第13章 公司简介

  • IFS
  • Pemamek
  • Dassault Systemes
  • BAE Systems
  • Altair Engineering Inc.
  • AVEVA Group Limited
  • Wartsila
  • KUKA AG
  • Damen Shipyards Group
  • PROSTEP AG

第14章 缩写与先决条件

第15章 附录

简介目录
Product Code: UMTI212768

The digital shipyard is an emerging paradigm that leverages advanced digital technologies to transform traditional shipbuilding and ship maintenance processes. At its core, the digital shipyard integrates a range of cutting-edge technologies, including 3D modeling, simulation, automation, and data analytics, to optimize every stage of the shipbuilding lifecycle. The use of 3D CAD models and virtual simulations enables shipbuilders to design, test, and validate ship designs before physical construction. This reduces design errors and accelerates the development cycle.

The Digital Shipyard Market is expected to grow at a strong CAGR of around 18.10% owing to the growing proliferation of advanced manufacturing technologies in the shipbuilding process globally. Digital shipyards leverage advanced software, data analytics, and automation to streamline various processes, from design to construction. Furthermore, Digital shipyards employ advanced computer-aided design (CAD) and computer-aided engineering (CAE) tools, enabling more efficient and accurate ship design and modeling. These technologies allow for the simulation of a vessel's performance, reducing the need for physical prototypes and cutting development time. For instance, a study done by the American Bureau of Shipping (ABS) found that digital shipyards can reduce design and engineering time by up to 50% compared to traditional methods. Additionally, digital shipyards employ advanced sensors, Internet of Things (IoT) devices, and virtual reality (VR) technologies to enhance quality control and inspection processes. These technologies enable real-time monitoring of critical components and the early detection of potential issues, reducing the risk of costly repairs or delays. For instance, A study by the International Maritime Organization found that the use of digital quality control methods can lead to a 20-30% reduction in rework and defects. Moreover, Digital shipyards leverage predictive maintenance and lifecycle management solutions to optimize the maintenance and upkeep of vessels. This includes the use of sensors, data analytics, and machine learning to predict and prevent equipment failures, reducing downtime and maintenance costs. For instance, a study by the International Association of Classification Societies found that the adoption of digital maintenance solutions can lead to a 10-20% reduction in maintenance costs and a 5-10% increase in asset availability. Factors such as these are fostering a conducive environment, driving the adoption of digital shipyards in the global shipbuilding industry.

Based on shipyard type, the market is segmented into commercial and military. Military shipyards have been at the forefront of adopting cutting-edge digital technologies, such as 3D modeling, simulation, and automation, to streamline their shipbuilding and repair processes. The need for enhanced efficiency, precision, and security in military vessel production has been a key factor driving the digital transformation of these shipyards. Furthermore, military vessels are subject to rigorous quality and safety standards, which has necessitated the use of advanced digital tools and processes. Digital shipyard technologies enable military shipyards to maintain strict quality control, conduct virtual testing, and ensure the overall integrity of their vessels. Additionally, the construction of highly specialized and technologically advanced military vessels, such as aircraft carriers, submarines, and advanced surface ships, has driven the demand for digital shipyard solutions. These complex vessels require precise planning, coordination, and execution, which can be better managed through the use of digital technologies. Lastly, the integration of Industrial Internet of Things (IIoT) and Artificial Intelligence (AI) technologies has improved operational efficiency, reduced downtime, and enhanced predictive maintenance in commercial shipyards. These technologies are critical for the development of military shipyards. These advances, among others, have contributed immensely to the adoption of digital shipyards within military shipyards.

Based on technology platforms, the market is segmented into robotics process automation, additive manufacturing, artificial intelligence & big data analytics, digital twin, blockchain, industrial internet of things, and others. The industrial internet of things, 3D modeling, scanning, & printing, digital twin, and AI & big data analytics are used in confluence within the digital shipyard umbrella. The key factors driving this adoption include the need to achieve operational efficiency. Technologies like IoT, digital twins, and AI streamline operations, reduce manual effort, and enhance productivity. Furthermore, applications such as predictive maintenance prevent costly breakdowns while utilizing 3D printing technologies reduces material waste. Additionally, the incorporation of these technologies helps shipyards reduce operational costs by automating labor-intensive tasks, minimizing the need for manual intervention, and improving resource utilization. The cost-effectiveness of these solutions makes them an attractive option for shipyard operators aiming to optimize their financial performance. Factors such as these are key reasons driving the adoption of additive manufacturing, artificial intelligence & big data analytics, digital twin, and industrial internet of things among major shipyards globally.

Based on the digitalization level, the market is segmented into fully digital shipyards, semi-digital shipyards, and partially digital shipyards. Semi-digital shipyards stand out as the prevailing choice among industry players. Semi-digital shipyards strike a balance between traditional operational methods and digital technologies, allowing for a gradual transition toward full digitalization. This incremental approach enables shipyards to leverage digital tools while benefiting from existing expertise and infrastructure, making it a pragmatic choice for many operators. Furthermore, Semi-digital shipyards offer a high degree of flexibility and adaptability, allowing them to tailor digital solutions to specific operational requirements and challenges. Additionally, Semi-digital shipyards exhibit scalability and future readiness by laying the foundation for gradual digital expansion and innovation. This scalability allows shipyards to adjust their digital footprint in response to market dynamics, emerging technologies, and evolving customer needs, ensuring long-term relevance and competitiveness. These factors, among others, are influencing the growing popularity of semi-digital shipyards as the most pragmatic choice among industry players.

For a better understanding of the market adoption of Digital Shipyard, the market is analyzed based on its worldwide presence in countries such as North America (The U.S., Canada, and the Rest of North America), Europe (Germany, The U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Australia, Rest of Asia-Pacific), Rest of World. North America emerges as a frontrunner in the digital shipyard sector, both in terms of market share and revenue generation. North America leads in technological innovation and adoption, leveraging advanced digital tools such as Robotics Process Automation (RPA), Artificial Intelligence (AI), Internet of Things (IoT), and Big Data Analytics in shipyard operations. Furthermore, the region is home to renowned shipbuilding companies, industry experts, and technology pioneers who spearhead digital innovation and set industry standards for best practices. North American shipyards are at the forefront of digital shipyard developments, showcasing expertise in areas such as digital twin technology, smart manufacturing, and cybersecurity in maritime operations. Additionally, the region's strong network of partnerships and collaborations between shipbuilders, technology firms, research institutions, and government agencies propels innovation and knowledge exchange in the digital shipyard ecosystem. Notably, partnerships between leading North American shipyards and tech giants have resulted in the development of cutting-edge digital solutions tailored to maritime industry needs. The confluence of factors such as these has fostered an environment favorable enough for the digital shipyard industry of North America to thrive and obtain a leadership position among other regions.

Some of the major players operating in the market include IFS; Pemamek; Dassault Systemes; BAE Systems; Altair Engineering Inc.; AVEVA Group Limited; Wartsila; KUKA AG; Damen Shipyards Group; and PROSTEP AG

TABLE OF CONTENTS

1.MARKET INTRODUCTION

  • 1.1. Market Definitions
  • 1.2. Main Objective
  • 1.3. Stakeholders
  • 1.4. Limitation

2.RESEARCH METHODOLOGY OR ASSUMPTION

  • 2.1. Research Process of the Digital Shipyard Market
  • 2.2. Research Methodology of the Digital Shipyard Market
  • 2.3. Respondent Profile

3.EXECUTIVE SUMMARY

  • 3.1. Industry Synopsis
  • 3.2. Segmental Outlook
  • 3.3. Market Growth Intensity
  • 3.4. Regional Outlook

4.MARKET DYNAMICS

  • 4.1. Drivers
  • 4.2. Opportunity
  • 4.3. Restraints
  • 4.4. Trends
  • 4.5. PESTEL Analysis
  • 4.6. Demand Side Analysis
  • 4.7. Supply Side Analysis
    • 4.7.1. Merger & Acquisition
    • 4.7.2. Investment Scenario
    • 4.7.3. Industry Insights: Leading Startups and Their Unique Strategies

5.PRICING ANALYSIS

  • 5.1. Regional Pricing Analysis
  • 5.2. Price Influencing Factors

6.GLOBAL DIGITAL SHIPYARD MARKET REVENUE (USD BN), 2022-2032F

7.MARKET INSIGHTS BY SHIPYARD TYPE

  • 7.1. Commercial
  • 7.2. Military

8.MARKET INSIGHTS BY TECHNOLOGY PLATFORM

  • 8.1. Robotic Process Automation
  • 8.2. Additive Manufacturing
  • 8.3. Artificial Intelligence & Big Data Analytics
  • 8.4. Digital Twin
  • 8.5. Blockchain
  • 8.6. Industrial Internet of Things (IIoT)
  • 8.7. Others (Cyber Security and Cloud & Master Data Management)

9.MARKET INSIGHTS BY DIGITALIZATION LEVEL

  • 9.1. Fully Digital Shipyard
  • 9.2. Semi Digital Shipyard
  • 9.3. Partially Digital Shipyard

10.MARKET INSIGHTS BY REGION

  • 10.1. North America
    • 10.1.1. U.S.
    • 10.1.2. Canada
    • 10.1.3. Rest of North America
  • 10.2. Europe
    • 10.2.1. Germany
    • 10.2.2. U.K.
    • 10.2.3. France
    • 10.2.4. Italy
    • 10.2.5. Spain
    • 10.2.6. Rest of Europe
  • 10.3. Asia-Pacific
    • 10.3.1. China
    • 10.3.2. Japan
    • 10.3.3. India
    • 10.3.4. Australia
    • 10.3.5. Rest of Asia-Pacific
  • 10.4. Rest of World

11.VALUE CHAIN ANALYSIS

  • 11.1. Marginal Analysis
  • 11.2. List of Market Participants

12.COMPETITIVE LANDSCAPE

  • 12.1. Competition Dashboard
  • 12.2. Competitor Market Positioning Analysis
  • 12.3. Porter Five Forces Analysis

13.COMPANY PROFILED

  • 13.1. IFS
    • 13.1.1. Company Overview
    • 13.1.2. Key Financials
    • 13.1.3. SWOT Analysis
    • 13.1.4. Product Portfolio
    • 13.1.5. Recent Developments
  • 13.2. Pemamek
  • 13.3. Dassault Systemes
  • 13.4. BAE Systems
  • 13.5. Altair Engineering Inc.
  • 13.6. AVEVA Group Limited
  • 13.7. Wartsila
  • 13.8. KUKA AG
  • 13.9. Damen Shipyards Group
  • 13.10. PROSTEP AG

14.ACRONYMS & ASSUMPTION

15.ANNEXURE