6G通讯:太赫兹与光学材料、组件(2024-2044)-预测线(共32项)、技术路线图
市场调查报告书
商品编码
1396215

6G通讯:太赫兹与光学材料、组件(2024-2044)-预测线(共32项)、技术路线图

6G Communications: Terahertz and Optical Materials, Components 2024-2044 with 32 Forecast Lines, Technology Roadmaps

出版日期: | 出版商: Zhar Research | 英文 355 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

本报告分析了全球6G通讯技术和市场趋势,概述了6G技术、主要材料和零件、近期技术发展趋势和未来前景、市场规模趋势和预测,并描述了我们将编制和提供组件的SWOT分析等资讯。

概述

数字 211点列出的公司 96家公司预测(2023-2043) 17 个结果章节架构 第 10 章SWOT 评估,路线图: 8点
报告统计资料

本报告分析内容:

  • 为什么 6G 庞大的硬体成本只能透过光学元件提供的普遍性和卓越性能来证明?
  • 为什么二氧化硅、石墨烯、氧化铝(包括蓝宝石)、3-5 化合物、氮化硅和硫属化物等专业知识有如此多的增值机会?
  • 高价位范围内有哪些新格式? 还有其他人吗?
  • 随着 6G 的到来,哪些材料会影响流行趋势?
  • 为什么在6G早期(2030年起)需要大量光纤和一些光无线通讯? 什么时候?
  • 为什么需要 6G 第二阶段才能实现所承诺的无处不在的一流性能?
  • 为什么要以0.3THz远红外线到紫外线的光学元件为主? 什么时候?
  • 为什么我们需要太赫兹光缆、RIS、远端光学无线传输硬体、光伏 6G 无人机、深层光纤以及光供电和光通讯客户端设备的庞大新市场? 什么时候? 除此之外?
  • 详细的预测(未来 20 年)、路线图、新资讯图表和 SOFT 评估是什么?

目录

第一章执行摘要与预测(2023-2043)

  • 6G报告系列
  • 本报告的目的
  • 拥有巨大机会的大公司
  • 本报告的主题
  • 本报告分析方法
  • 主要结论:6G光学系统-从0.3THz到UV
  • 主要结论:6G 材料和组件 - 从 0.3THz 到紫外线
  • 无线通讯的两个阶段和预计的 6G 推出
  • 6G目标:NTT、华为、三星、诺基亚、中国企业等。
  • 5G/6G无线通用参数:多重挑战呈上升趋势
  • 6G 传输硬体如何提供比 5G 更好的效能
  • 6G 第 1 阶段与第 2 阶段频段
  • 4个频段可提供的6G主要卖点(共16种)
  • 资讯图表:6G 的大规模硬体部署、妥协以及光学的重要性
  • 航空航太6G对比:7种类型优缺点对比
  • 市场上水下/地下间隙的 6G 传输选项
  • 资讯图表:可能的 6G 光学硬体供应商(包括 0.3-1THz):案例研究
  • 资讯图表:使用红外线、可见光和紫外线频率的 6G 传输系统
  • 6G 通讯将如何改变物质需求?
  • 传输距离的困境
  • 资讯图表:由于介电/主动元件选项有限而导致太赫兹间隙
  • 克服电介质、发射器和探测器不足的太赫兹间隙
  • 三种6G太赫兹通讯系统
  • 太赫兹积体电路选项
  • 克服机载自由空间光学 (FSO) 衰减问题
  • 按国家/地区划分的合适 FSO 硬体和系统供应商范例(共 32 家)
  • RIS(可重构智慧表面)的SWOT评估:6G版本
  • 太赫兹波导在6G系统设计的SWOT评估
  • 6G系统设计中光纤FiWi的SWOT评估
  • 超材料和超表面的 SWOT 评估
  • 6G THz 低损耗材料机会的 SWOT 评估
  • 四个 6G 路线图(2023-2043 年)
    • 远红外线 (0.3-1THz) 6G(以介质距离计)和 Gbps 路线图
    • 6G RIS 路线图(2023-2043)
    • 6G总体路线图(2022-2031)
    • 6G总体路线图(2032-2043)
  • 6G材料、装置和背景:预测(共17项,2023-2043)
    • 假设
    • 6G 硬体作为概念电信市场的一部分
    • 累计安装的 6G RIS 面板数量(2023 年至 2043 年底)
    • 6G RIS市场年扩张面积(单位:十亿平方米,2023-2043)
    • 全球6G RIS市场规模(全部5种,单位:十亿美元,2023-2043年):表格
    • 6G RIS全球市场规模(全部5种,单位:10亿美元,2023-2043):图表
    • 5G/6G基地台市场(年度,单位:100万台,2023-2043)
    • 全球光纤市场:6G 的潜在影响(十亿美元,2023-2043 年)
    • 全球磷化铟半导体市场:6G 的潜在影响(十亿美元,2023-2043 年)
    • 全球超材料与超表面市场(单位:十亿平方米,2023-2043 年)
    • 全球太赫兹硬体市场(6G除外)(单位:十亿美元,2023-2043)
    • 全球行动通讯服务市场:依类别划分(2023-2042 年)
  • 全球主要 6G 材料和零件活动的地点(2023-2043 年)

第 2 章简介

  • 本报告的 6G 目标和分析范围
  • 为什么光无线通讯对于承诺的 6G 性能至关重要
  • 资讯图:各种环境下的 6G 愿望
  • 6G:农村地区的挑战
  • 市面上的水下和地下空间有 6G
  • 术语混乱
  • 为何 6G 需要大规模基础设施和多种传输介质
  • 6G必备工具:RIS、OWC、电缆中继(光纤/太赫兹)
    • OWC(光无线通讯)
    • RIS(可重构智慧表面)的结构与潜在功能
  • 主动 RIS 和其他 6G 基础设施的绿色电力困境
  • 客户端设备中的太阳能发电材料,可使 6G 基础设施和电力翻倍
  • 6G组件/产品整合的製造技术

第 3 章 6G OWC(光无线通讯)

  • 光无线通讯(OWC)
    • 实际应用领域与新应用
    • 5G FSO 的经验教训
  • OWC 及其子集:定义与范围
  • 资讯图表:使用 OWC 的潜在 6G 传输系统
  • 机上 6G 的红外线 (IR)、可见光 (VL) 和紫外线 (UV):问题和参数
  • FSO 系统基础知识
  • 假设或预设为 LiFi
  • 航空航天 OWC 假设 6G
    • 摘要
    • 6G航空太空船(共7种):资助者、高度与传输选项比较(7种)
    • 6G空天飞机(共7种):优缺点
    • 6G高空作业平台选型
    • 无人机将受益于 6G,这也将有利于无人机和 UAM(城市空中交通)
    • 配备 HAPS 无人机的垂直 FSO
    • Thales-Alenia Stratobus 飞艇
    • 中航工业彩虹(彩虹)CH-T4
    • 空中巴士 Zephyr
    • 太阳能无人机在几公里高空的可行性:梅莹
    • 小型无人机与6G连网飞行平台(包括集群)
  • 机载 FSO 衰减:物理特征、挑战与解决方案
    • 摘要
    • 大气损失
    • 几何损失
    • 桥樑辐射
    • 水下 6G FSO 的频率选择与替代方案
    • 水下6G FSO的频率选择
  • OWC 发射器/侦测器组件与材料
    • 摘要
    • 用于光学 6G 的新型发射元件:DFB、FP、VCSEL、OLED、LED
    • 光学6G光电探测器接收装置
  • FSO硬体与系统供应商案例(共32个案例):包含国家分析
  • 参考文献

第 4 章太赫兹、红外线和可见光 6G 的超材料和超表面

  • 6G 超材料:9 个潜在应用
  • GHz/THz/红外线/光学超材料的应用
  • 元原子和图案选项
  • 光学超材料图案与选项
  • 商业、营运、理论和结构方案的比较
  • 6G所需的六种超材料的格式和范例
  • 超表面
  • 超曲面
  • 活性材料的图案化
  • 光学 ENX 超材料
  • 6G 超表面光能量收集的可能性
  • 透过操控红外线光的超材料 6G冷却的可能性
  • 一家可以在较高太赫兹、红外线和光学频率提供 6G 的超材料公司
    • Echodyne
    • Evolv Technology
    • Fractal Antenna Systems
    • iQLP
    • Kymeta
    • Meta
    • Metacept Systems
    • Metawave
    • Nano Meta Technologies
    • Pivotal Commware
    • Plasmonics
    • Radi-Cool
    • Sensormetrics
    • teraview
  • 超材料的长期整体图景
  • 超材料和超表面的软评估

第五章0.3-10THz远红外线的6G RIS

  • RIS(可重构智慧表面)基础知识
  • Metasurface RIS 硬体的工作原理
  • 半被动和主动RIS材料和组件
    • 摘要
    • 结构电子学的 RIS 趋势:智慧材料与薄膜技术
  • 6G RIS (0.1-1THz):成本层次问题
  • 改进 RIS:计划到 2045 年
  • 意识到 2022 年硬体理论上将落后
  • 主要 RIS 标准计划 ETSI
  • 6G基地台RIS
  • RIS - 整合使用者 - 中央网路:架构与最佳化
  • RG RIS控制问题
  • 对九个 RIS 同步器系列的评估 - 来自最近的研究管道
  • 2022 年后的进展
  • 6G 迈向 1THz RIS(包括石墨烯、二氧化钒、GST、GaAs)
    • 摘要
    • 用于 RIS 的 III-V 族和 SiGe
    • RIS用二氧化钒
    • RIS 硫属化物
    • 1THz以上的远红外线RIS材料

第 6 章 6G RIS 用于近红外线和可见光

  • 摘要
  • 近红外线/可见光RIS
  • 具有放大功能的近红外线RIS
  • RIS 相容 LiFi
  • 增强或取代 RIS 的光学设备
  • Hikari RIS:一般从 2022 年开始
  • SWOT 评估指导未来 RIS 设计

第7章6G电介质、被动光学材料与半导体(从0.3THz到可见光)

  • 电介质
    • 摘要
    • 6G 介电优化
    • 热固性材料与热塑性材料与无机化合物
    • 6G 的低介电常数和低损耗电介质:根据 14 个系列的 5 个标准进行选择
    • 寻找更好的6G低损耗材料-介电常数优化
    • 19种低损耗化合物:简化介电常数(0.1-1THz)
    • 优化 19 种材料系列跨太赫兹频率的耗散正切
    • 用于可重编程智慧表面RIS的低损耗材料
    • 特殊情况:1THz 6G 高阻硅
    • 从5G到6G的各种电介质:更好的参数、更低的成本、更大的面积
  • 6G半导体材料的选择
    • 5G 进步:概述与经验教训
    • 11种半导体/主动层候选物的现状
    • III-V族化合物作为常见的6G材料
    • 1THz左右6G光敏感材料
    • 碳化硅电光调製器
    • 高达 1THz 6G 的相变和电敏电介质
    • 适用于多种 6G 应用的二氧化钒
    • 硫系相变材料
    • 液晶聚合物LCP向列液晶6G THz及光学NLC
  • 6G晶片和雷射用热电温控材料
  • 2022 年的其他趋势
  • 研究趋势

第8章用于6G传输的太赫兹电缆波导与客户端设备波导

  • 太赫兹波导电缆:必要性与现状
  • 6G波导电缆设计与材料
  • 含氟聚合物
    • 聚四氟乙烯
    • 全氟聚(丁烯基乙烯基醚)PBVE
  • 聚丙烯
  • 聚乙烯/聚丙烯超材料太赫兹波导
  • 长聚合物太赫兹电缆的製造
  • 金属线上蚀刻的太赫兹波导光栅
  • 由 InAs、GaP、蓝宝石等製成的太赫兹波导:用于发射极增强、感测等。
  • 6G 系统设计中太赫兹电缆和波导的 SWOT 评估

第9章6G系统光纤

  • 摘要
  • 光纤电缆设计与材料
    • 形状、二氧化硅、蓝宝石等。
    • 聚对苯二甲酸丁二醇酯、聚乙烯、聚酰亚胺、FRP
    • 函数型
  • 光纤运作中
  • 限制使用光纤和电子设备以降低成本
  • 发生严重攻击
  • 掺铒光纤放大器 (EDFA)
  • 光子学定义的太赫兹 6G 无线电和光子集成
  • 光纤在6G系统设计上的SWOT评估

第10章6G中的石墨烯和其他2D材料

  • 6G 和 6 个相关用途概述
  • 石墨烯太赫兹感测与替代方案的比较
  • 用于 6G 太赫兹超表面的石墨烯等离子体、调製器、分离器和路由器
  • 用于6G光整流器和光吸收器的石墨烯栅极太赫兹电晶体
  • 用于无线通讯的频率高达 10THz 的其他二维材料:MoS、BN、钙钛矿
简介目录

A unique new 355-page report identifies your huge optical material and component opportunities from 6G Communications as it becomes primarily an optical system - "6G Communications: Optical Materials and Components Markets: Visible, Near IR, Far IR from 0.3THz 2023-2043". It is a drill down from the overview report on 6G called, "6G Communications: Materials and Components Markets 2023-2043".

Summary

REPORT STATISTICS
Tables and images:211
Companies mentioned:96
Forecasts 2023-2043:17
Chapters:10
SWOT appraisals, roadmaps:8

The new report answers such questions as:

  • Why can the massive hardware expense of 6G only be justified by the ubiquity at stellar performance that comes from optics?
  • Why will there be so many added value opportunities for your expertise in silicas, graphene, aluminas including sapphire, 3-5 compounds, silicon nitride, chalcogenides?
  • What new forms with premium pricing? What else?
  • What materials are trending down with the advent of 6G?
  • Why does the first 6G phase from 2030 need massive amounts of fiber optics and some optical wireless communication? When?
  • Why will the second 6G phase be necessary to achieve the promised ubiquitous stellar performance?
  • Why will that have to be primarily with optics from 0.3THz far infrared to UV? When?
  • Huge new markets for THz cable, reconfigurable intelligent surfaces, long-distance optical wireless transmission hardware, photovoltaic 6G drones, deep fiber optics, optically powered and optically communicating client devices? Why? When? What else?
  • Detailed 20-year forecasts, roadmaps, new infograms and SOFT appraisals?

This report starts with a detailed glossary and listing of 96 of the companies mentioned. The Executive Summary and Conclusions is an easy read for those in a hurry. Its 58 pages contain the necessary explanations, new infograms, opportunity identification, leading players, SOFT appraisals, roadmaps and 17 forecasts all 2023-2043. No equations. No nostalgia.

The 23-page Introduction then explains our rationale, coverage and key issues. See the severe limitations of the various candidate technologies that must be overcome - not uncritical enthusiasm. Understand why optical wireless communication must become commonplace in 6G systems and that includes overcoming the Terahertz gap of inadequate materials and device performance at far infrared (above 0.3THz). Here are the vital photovoltaic and other optical material manufacturing technologies involved with more on both later in the report.

Chapter 3 "6G Optical Wireless Communication OWC" runs to 45 pages despite the analysis being condensed into many tables and images, including 32 participants analysed by country. We cover everything from satellite-to-client device, LiFi, lessons from limited use of OWC in 5G and why it will be a key enabling technology for 6G, component and frequency choices emerging from the research pipeline, choice of solar aerospace vehicles from satellites to upper atmosphere drones, lower-level solar drone swarming. A major focus in optical carrier attenuation modes and what to do about them, including a detailed look at effects of weather and frequency choices. We predict at least tenfold improvements in range and quality of service, including underwater and aerospace-to-earth. Considerable commercial opportunity is identified. See the materials and formats of next emitters and detectors including DFB, FP, VCSEL, OLED, LED, photodetectors.

Chapter 4 runs to 53 pages because there are at least nine potential uses for metamaterials in 6G in contrast to their minimal use in 5G so this is a large emerging market. They are more compact antennas, THz cable, blocking THz to optical signals for privacy or interference suppression, beam shaping of laser emitters, energy harvesting, 6G reprogrammable intelligent surfaces at optical frequencies (covered in chapters 5 and 6), improving 6G response, reach, device power reduction, increasing power output of photovoltaics powering 6G infrastructure and client devices by a passive overlayer following the sun, increasing power output of photovoltaics by a passive cooling over-layer, other cooling. See 16 manufacturers profiled with their 6G positioning in all of this.

Chapter 5 is "6G reconfigurable intelligent surfaces at 0.3-10THz far infrared" with pages covering materials, economics, materials and device and chapter 6 covers, "6G reconfigurable intelligent surfaces at near infrared and visible light" with 14 pages because these are likely to appear at a later stage and are more speculative.

Chapter 7 at 40 pages concerns "Dielectrics, passive optical materials and semiconductors for 6G 0.3THz to visible". Some were covered in preceding chapters but here we see the big picture and detailed comparisons and likely choices, with reasons and a profusion of latest references for further reading. Why the reduced choice of dielectrics above 0.3THz? What is being done about it? Rational in choosing between thermosets, thermoplastics and inorganic compounds? Liquid crystal polymers? Materials and devices for temperature management of lasers and optical chips? Best phase change and semiconductor material choices for 6G? Winners and losers as we go from 5G to 6G? It is all here in comparison charts and infograms not rambling text.

Chapter 8 concerns important new devices, transformative in 6G performance if successful. It is, "THz cable waveguides for 6G transmission and client device waveguides" complementary to fiber optics in 6G by offering simpler systems. Its 15 pages give needs and likely materials, formats and performance. See silica, sapphire, fluoropolymer, polypropylene and other opportunities and manufacturing options for the first long reels of such cable.

6G will use a huge amount of fiber optics including "deep fiber" going to individual rooms in buildings and fiber underwater. Mostly that will be pre-existing shared fiber made conventionally but there are some aspects that will be peculiar to 6G so we cover fiber optics for 6G systems in the 13 pages of chapter 9 that end with a SWOT appraisal.

Having found that graphene is one of the most popular materials in the optical 6G research pipeline, we end the report with a deeper look without repetition of earlier material. Chapter 10. "Graphene and other 2D materials in 6G", in 17 pages, surfaces six potential uses in 6G with formats, alternatives, ancillary materials and analysis. The examples cover near and far infrared and visible light frequencies.

Table of Contents

1. Executive Summary and 17 forecasts 2023-2043

  • 1.1. Our 6G report series
  • 1.2. Purpose of this report
  • 1.3. Giant companies with giant opportunities
  • 1.4. The subject of this report
  • 1.5. Methodology of this analysis
  • 1.6. Key conclusions: 6G optical systems 0.3THz to ultraviolet
  • 1.7. Key conclusions: 6G materials and components for 0.3THz to ultraviolet
  • 1.8. Wireless communications and expected two phases of 6G launch
  • 1.9. Objectives for 6G of NTT, Huawei, Samsung, Nokia, the Chinese and others
  • 1.10. Typical parameters for 5G and 6G wireless showing some challenges increasing
  • 1.11. How 6G transmission hardware will achieve much better performance than 5G
  • 1.12. Spectrum for 6G phase one and two
  • 1.13. 16 primary selling features of 6G against what four frequency bands can provide
  • 1.14. Infogram: 6G massive hardware deployment, compromises, importance of optics
  • 1.15. Aerospace vehicles compared for 6G-positives and negatives compared for 7 types
  • 1.16. 6G transmission options underwater and underground-gap in the market
  • 1.17. Infogram: Probable 6G optical hardware suppliers including 0.3-1THz: examples
  • 1.18. Infogram: 6G transmission systems that will use infrared, visible and ultraviolet frequencies
  • 1.19. How material needs change with 6G communications
  • 1.20. Transmission distance dilemma
  • 1.21. Infogram: Terahertz gap of limited dielectric and active device choices
  • 1.22. Conquering the terahertz gap of inadequate dielectrics, emitters and detectors
  • 1.23. Three kinds of 6G THz communication systems
  • 1.24. THz integrated circuit choices
  • 1.25. Conquering the problematic free space optical FSO attenuation in air
  • 1.26. 32 examples of suppliers of appropriate FSO hardware and systems by country
  • 1.27. Reconfigurable intelligent surface RIS SWOT appraisal for 6G versions
  • 1.28. SWOT appraisal of terahertz waveguides in 6G system design
  • 1.29. SWOT appraisal of fiber optics FiWi in 6G system design
  • 1.30. SWOT assessment for metamaterials and metasurfaces
  • 1.31. SWOT appraisal of 6G THz low loss material opportunities
  • 1.32. Four 6G roadmaps 2023-2043
    • 1.32.1. Far infrared 0.3-1THz 6G by media range meters and Gbps roadmap
    • 1.32.2. 6G reconfigurable intelligent surface RIS roadmap 2023-2043
    • 1.32.3. 6G general roadmap 2022-2031
    • 1.32.4. 6G general roadmap 2032-2043
  • 1.33. 6G materials, devices and background - 17 forecasts 2023-2043
    • 1.33.1. Assumptions
    • 1.33.2. 6G hardware as part of a notional telecommunications market
    • 1.33.3. 6G reconfigurable intelligent surfaces cumulative panels number deployed bn year end 2023-2043
    • 1.33.4. 6G reconfigurable intelligent surfaces market yearly area added bn. sq. m. 2023-2043
    • 1.33.5. 6G reconfigurable intelligent surfaces global $ billion by 5 types 2023-2043 table
    • 1.33.6. 6G reconfigurable intelligent surfaces global $ billion by 5 types 2023-2043 graph
    • 1.33.7. Market for 5G and 6G base stations millions yearly 2023-2043
    • 1.33.8. Fiber optic cable market global with possible 6G impact $billion 2023-2043
    • 1.33.9. Indium phosphide semiconductor market global with possible 6G impact $billion 2023-2043
    • 1.33.10. Global metamaterial and metasurface market billion square meters 2023-2043
    • 1.33.11. Terahertz hardware market excluding 6G $ billion globally 2023-2043
    • 1.33.12. Mobile communications service market global $ billion by category 2023-2042
  • 1.34. Location of primary 6G material and component activity worldwide 2023-2043

2. Introduction

  • 2.1. 6G objectives and our coverage
  • 2.2. Why optical wireless communication is essential for promised 6G performance
  • 2.3. Infogram: 6G aspirations across the landscape
  • 2.4. 6G rural challenge
  • 2.5. 6G underwater and underground-gap in the market
  • 2.6. Terminology thicket
  • 2.7. Why 6G needs massive infrastructure and many transmission media
  • 2.8. Essential 6G tools: RIS, OWC, cable intermediary (fiber optic and THz)
    • 2.8.1. Optical wireless communication OWC
    • 2.8.2. Reconfigurable intelligent surface RIS construction and potential capability
  • 2.9. Green power dilemma with active RIS and other 6G infrastructure
  • 2.10. Materials for photovoltaics at 6G infrastructure and client devices with doubled power
  • 2.11. Manufacturing technologies for 6G components and product integration

3. 6G Optical wireless communication OWC

  • 3.1. Optical wireless communication OWC
    • 3.1.1. Actual and emerging applications
    • 3.1.2. Lessons from 5G FSO
  • 3.2. Definitions and scope of OWC and its subsets
  • 3.3. Infogram: Potential 6G transmission systems using OWC
  • 3.4. Infrared IR, visible light VL and ultraviolet UV for 6G in air: issues and parameters
  • 3.5. FSO system basics
  • 3.6. Subsuming or defaulting to LiFi
  • 3.7. Aerospace OWC envisaged for 6G
    • 3.7.1. Overview
    • 3.7.2. Aerospace vehicles for 6G-backers, altitudes, transmission options compared for 7 types
    • 3.7.3. Aerospace vehicles for 6G-positives and negatives for 7 types
    • 3.7.4. Choice of 6G aerial platforms
    • 3.7.5. Drones benefit 6G which in turn benefits drones and urban air mobility
    • 3.7.6. Vertical FSO from HAPS drones
    • 3.7.7. Thales-Alenia Stratobus airship
    • 3.7.8. AVIC China Caihong (Rainbow) CH-T4
    • 3.7.9. Airbus Zephyr
    • 3.7.10. Feasibility of solar drones at only a few kms altitude: Mei Ying
    • 3.7.11. Small drones and networked flying platforms for 6G including swarming
  • 3.8. FSO attenuation in air: physics, issues and solutions
    • 3.8.1. Overview
    • 3.8.2. Atmospheric loss
    • 3.8.3. Geometric loss
    • 3.8.4. Background radiation
    • 3.8.5. 6G FSO frequency choices and alternatives underwater
    • 3.8.6. Choosing frequencies for 6G FSO under water
  • 3.9. OWC emitter and detector components and their materials
    • 3.9.1. Overview
    • 3.9.2. Emitter devices emerging for optical 6G: DFB, FP, VCSEL, OLED, LED
    • 3.9.3. Receiver devices for optical 6G-photodetectors
  • 3.10. 32 examples of suppliers of FSO hardware and systems with country analysis
  • 3.11. Further reading

4. Metamaterials and metasurfaces for THz, IR, visible 6G

  • 4.1. Nine potential uses for metamaterials in 6G
  • 4.2. Applications of GHz, THz, infrared and optical metamaterials
  • 4.3. The meta atom and patterning options
  • 4.4. Optical metamaterial patterns and options
  • 4.5. Commercial, operational, theoretical, structural options compared
  • 4.6. Six formats of metamaterial needed for 6G with examples
  • 4.7. Metasurfaces
  • 4.8. Hypersurfaces
  • 4.9. Active material patterning
  • 4.10. Optical ENX metamaterials
  • 4.11. Metasurface optical energy harvesting potentially for 6G
  • 4.12. Metamaterials manipulating infrared potentially for 6G cooling
  • 4.13. Metamaterial companies that could serve 6G at upper THz, IR, optical frequencies
    • 4.13.1. Echodyne
    • 4.13.2. Evolv Technology
    • 4.13.3. Fractal Antenna Systems
    • 4.13.4. iQLP
    • 4.13.5. Kymeta
    • 4.13.6. Meta
    • 4.13.7. Metacept Systems
    • 4.13.8. Metawave
    • 4.13.9. Nano Meta Technologies
    • 4.13.10. Pivotal Commware
    • 4.13.11. Plasmonics
    • 4.13.12. Radi-Cool
    • 4.13.13. Sensormetrics
    • 4.13.14. teraview
  • 4.14. The long term picture of metamaterials overall
  • 4.15. SOFT assessment of metamaterials and metasurfaces

5. 6G reconfigurable intelligent surfaces at 0.3-10THz far infrared

  • 5.1. Reconfigurable intelligent surfaces basics
  • 5.2. How metasurface RIS hardware operates
  • 5.3. Semi-passive and active RIS materials and components
    • 5.3.1. Overview
    • 5.3.2. RIS trend to structural electronics: smart materials and thin film technology
  • 5.4. Cost hierarchy challenge for 6G reconfigurable intelligent surfaces 0.1-1THz
  • 5.5. RIS improvements planned to 2045
  • 5.6. Realisation that hardware lags theory in 2022
  • 5.7. Major RIS standards initiative ETSI
  • 5.8. RIS for 6G base stations
  • 5.9. RIS- Integrated User-Centric Network: Architecture and Optimization
  • 5.10. RG RIS control issues
  • 5.11. Appraisal of 9 tuning device families for RIS from recent research pipeline
  • 5.12. Advances from 2022 onwards
  • 5.13. Progressing to 1THz RIS for 6G including graphene, vanadium dioxide, GST, GaAs
    • 5.13.1. Overview
    • 5.13.2. lll-V and SiGe for RIS
    • 5.13.3. Vanadium dioxide for RIS
    • 5.13.4. Chalcogenides for RIS
    • 5.13.5. Far infrared RIS materials above 1THz

6. 6G reconfigurable intelligent surfaces at near infrared and visible light

  • 6.1. Overview
  • 6.2. Near IR and visible light RIS
  • 6.3. Near infrared RIS with amplification capabilities
  • 6.4. RIS enabled LiFi
  • 6.5. Optical devices enhancing or replacing RIS
  • 6.6. Optical RIS generally from 2022
  • 6.7. SWOT appraisal that must guide future RIS design

7. Dielectrics, passive optical materials and semiconductors for 6G 0.3THz to visible

  • 7.1. Dielectrics
    • 7.1.1. Overview
    • 7.1.2. Dielectric optimisation for 6G
    • 7.1.3. Thermoset vs thermoplastic vs inorganic compounds
    • 7.1.4. Choice of 14 families of low permittivity, low loss dielectrics for 6G against five criteria
    • 7.1.5. The quest for better 6G low loss materials-permittivity optimisation
    • 7.1.6. Permittivity 0.1-1THz for 19 low loss compounds simplified
    • 7.1.7. Dissipation factor optimisation across THz frequency for 19 material families
    • 7.1.8. Low loss materials for reprogrammable intelligent surfaces RIS
    • 7.1.9. Special case: high resistivity silicon for 6G at 1THz
    • 7.1.10. Different dielectrics from 5G to 6G: better parameters, lower costs, larger areas
  • 7.2. Semiconductor material choices for 6G
    • 7.2.1. Overview and lessons from 5G advances
    • 7.2.2. Status of 11 semiconductor and active layer candidates
    • 7.2.3. lll-V compounds as general 6G materials
    • 7.2.4. Photoactive materials for 6G around 1THz
    • 7.2.5. Silicon carbide electro-optic modulator
    • 7.2.6. Phase change and electric-sensitive dielectrics for up to 1THz 6G
    • 7.2.7. Vanadium dioxide for many 6G uses
    • 7.2.8. Chalcogenide phase change materials
    • 7.2.9. Liquid crystal polymers LCP nematic liquid crystals NLC for 6G THz and optics
  • 7.3. Thermoelectric temperature control materials for 6G chips and lasers
  • 7.4. Other advances in 2022
  • 7.5. Research trends

8. THz cable waveguides for 6G transmission and client device waveguides

  • 8.1. Terahertz waveguide cables: need and state of play
  • 8.2. Design and materials of 6G waveguide cables
  • 8.3. Fluoropolymers
    • 8.3.1. PTFE
    • 8.3.2. Perfluorinated poly(butenyl vinyl ether) PBVE
  • 8.4. Polypropylene
  • 8.5. Polyethylene polypropylene metamaterial THz waveguides
  • 8.6. Manufacturing polymer THz cable in long reels
  • 8.7. THz waveguide gratings etched on metal-wires
  • 8.8. THz waveguides from InAs, GaP, sapphire etc. for boosting emitters, sensing etc.
  • 8.9. SWOT appraisal of THz cables and waveguides in 6G system design

9. Fiber optics for 6G systems

  • 9.1. Overview
  • 9.2. Fiber optic cable design and materials
    • 9.2.1. Format, silica, sapphire and more
    • 9.2.2. Polybutylene terephthalate, polyethylene, polyimide, FRP
    • 9.2.3. Functional types
  • 9.3. Fiber optics in action
  • 9.4. Limiting use of the fiber and electronics to save cost
  • 9.5. Serious attacks occurring
  • 9.6. Erbium-doped fiber amplifiers EDFA
  • 9.7. Photonics defined radio and photonic integration for THz 6G
  • 9.8. SWOT appraisal of fiber optics in 6G system design

10. Graphene and other 2D materials in 6G

  • 10.1. Overview and six relevant uses for 6G
  • 10.2. Graphene THz sensing compared with alternatives
  • 10.3. Graphene plasmonics for 6G THz metasurfaces, modulators, splitters, routers
  • 10.4. Graphene gated THz transistors for 6G optical rectification, optical absorbers
  • 10.5. Other 2D materials to 10THz for wireless communications: MoS, BN, perovskite