固体冷却材料及系统的市场及技术趋势 (2026~2046年):辐射冷却·PDRC·热冷却·热电冷却·多模式·多目的·其他
市场调查报告书
商品编码
1794015

固体冷却材料及系统的市场及技术趋势 (2026~2046年):辐射冷却·PDRC·热冷却·热电冷却·多模式·多目的·其他

Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046

出版日期: | 出版商: Zhar Research | 英文 472 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

摘要

受全球暖化、人工智慧资料中心、电动车和零排放电力生产等因素的影响,预计2026年至2046年间,冷却技术的需求将激增。固态冷却技术因其顺应多功能智慧材料的发展趋势、更高的可靠性、更广泛的适用性、更长的使用寿命以及降低系统级成本的潜力,预计将发挥核心作用。

本报告探讨了固态冷却材料与系统市场及技术,为增值材料供应商、产品整合商以及整个价值链提供全面且最新的分析。这本472页的书籍包含8个章节、11个SWOT评估、33条预测线(2026-2046)和36张资讯图,全面涵盖了该快速发展领域到2025年的进展,并重点介绍了截至2025年发表的97篇最重要的研究论文。

目录

第1章 本报告的目的

  • 本分析的研究方法
  • 冷却需求成长的原因
  • 固态冷却的性质及其为何成为当前的优先事项
  • 冷却工具包和目前有前景的领域
  • 20个关键结论
    • 九种候选固态冷却技术的比较与评估
    • 目前研究的重点应用
    • 固态冷却中具有前景的材料和原理
    • 2022 年至 2025 年 94 篇研究论文中关于热冷却的提及:按类型
    • 2024 年至 2025 年 292 篇固态冷却研究论文中的关键资料
    • 蒸气压缩冷却替代的潜力
    • 提高太阳能板效率的冷却潜力
    • 冷却 6G 通讯基础设施和客户端设备的潜力
    • 自冷雷射的潜力
  • 2000 年至 2046 年各种固态冷却技术的温度下降
  • 被动昼夜辐射冷却 (PDRC) 及相关技术放射线冷却技术
  • 主要热致冷却法评估
  • 热电冷却的 SWOT 评估和材料分析
  • 固态冷却路线图:依市场与技术
  • 市场预测:2026-2046
    • 全球冷却模组市场:依 7 种技术
    • 商用产品中的地面辐射冷却性能
    • 空调市场规模
    • 全球暖通空调、冰箱、冷冻机和其他冷却市场
    • 冰箱和冷冻机市场规模
    • 固定电池市场与冷却需求
    • 6G 通讯基础设施和客户端设备的热管理材料和结构市场
    • 6G 介电材料和导热材料市场(按地区)
    • 5G 与 6G 热界面材料市场
    • 6G 与 5G 基地台市场
    • 市场规模:6G 基地台站点
    • 市场规模:6G RIS
    • 全球智慧型手机销量
    • 热元设备市场(依应用)

第2章 简介

  • 概要
  • 冷却需求的成长与变化
  • 2026 年至 2046 年冷却需求急剧变化的范例
  • 2026 年至 2046 年冷却技术向智慧材料发展的趋势
  • 空调的革新:低功耗、更环保、更经济
  • 广泛使用和被提议的不受欢迎材料:商业机会
  • 固态冷却竞争技术的范例

第3章 被动式白天辐射冷却 (PDRC)

  • 概要
  • PDRC 基础知识
  • 辐射冷却材料研究与分析:依结构与配方
  • 潜在优势与应用
  • 2025 年前的其他关键进展
  • PDRC 商业化的公司
    • 3M USA
    • BASF Germany
    • i2Cool USA
    • LifeLabs USA
    • Plasmonics USA
    • Radicool Japan, Malaysia etc.
    • SkyCool Systems USA
    • SolCold Israel
    • Spinoff from University of Massachusetts Amherst USA
    • SRI USA
  • PDRC的SWOT评估

第4章 辐射冷却的广泛视角:包括自适应、可切换、可调、Janus、反斯托克斯和先进光子固态冷却

  • 概述及 SWOT 分析
  • 2025 年辐射冷却的 22 项重大进展
  • 2026 年辐射冷却技术成熟度曲线
  • 自适应和可切换辐射冷却
  • 采用双向控制的可调式辐射冷却:Janus 辐射器 (JET) 的进展及 2024-2025 年 SWOT 评估
  • 反斯托克斯萤光冷却的进展及 2024-2025 年 SWOT 评估
  • 先进的光子冷却与防热技术

第5章 利用铁电相变进行热冷却

  • 利用结构和铁电相变的冷却模式和材料
  • 固态冷却的潜力相变冷却在某些应用中与其他方法竞争
  • 与热致冷却相关的物理原理
  • 热致冷却的工作原理
  • 与热电冷却的比较以及有前景的热致冷却技术的识别
  • 扩大热致冷却应用的研究建议
  • 电致冷却
  • 磁致冷却:SWOT 评估
  • 机械致冷却(弹性致冷却、压力致冷却和扭转致冷却)
  • 2025 年前多热致冷却的进展

第6章 实行技术:超材料冷却材料和设备

  • 概要
  • 超原子、图案化和静态到动态传热
  • 关键结论:市场位置
  • 关键结论:代表性配方、功能与製造技术
  • 132 个近期热超材料研究实例中的配方流行趋势
  • 2025 年及 2024 年其他超材料冷却及相关研究进展
  • 积层製造设计、製造、特性与应用

第7章 未来热电冷却和热电发电(作为其他固态冷却的用户和电源)

  • 热电材料
  • 广域柔性热电冷却代表尚未满足的市场需求与挑战
  • 建筑物辐射冷却:热电发电的多功能用途
  • TEC 与 TEG 中的散热挑战:不断发展的解决方案
  • 热电冷却和冷气发电的 20 项进展
  • 过去发展
  • 82家珀尔帖冷冻热电模组及产品製造商

第8章 热界面材料 (TIM) 及其他导热材料及结构

  • 概述:从导热黏合剂到导热混凝土
  • 解决导热材料冷却难题的关键考量因素
  • 热界面材料 (TIM)
  • 聚合物选项:硅基或碳基
  • 2025年及以后导热聚合物的发展
简介目录

Summary

The period 2026-2046 will be marked by a surge in demand for cooling technology, reasons including global warming, AI datacenters, electric vehicles and zero-emission electricity production. Solid-state cooling will come center stage because it serves the trend to multifunctional smart materials and it tends to be more reliable, applicable and longer-lived, with potential for lowest cost at system level.

Unique report

The unique Zhar Research report, "Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046" is the only comprehensive, up-to-date analysis of these opportunities for added value materials suppliers, product integrators and all in the value chain. It has 8 chapters, 11 SWOT appraisals, 33 forecast lines 2026-2046, 36 infograms and 472 pages. Essentially, for such a fast-moving subject, it has full coverage of the surge of advances through 2025, including the 97 most important research papers through 2025.

The self-sufficient Executive Summary and Conclusions (43 pages) pulls it all together with 20 primary conclusions, the forecasts, new tables, pie charts, SWOT appraisals and graphics. The Introduction (31 pages) explains why the need for cooling becomes much larger and often different in nature, from 1kW microchips to 6G Communications.

Reinventing cooling - PDRC and caloric progress

Learn the problems with the dominant vapor compression cooling in our refrigerators, freezers and air conditioning. Understand reinventing air conditioning to be lower power, greener, more affordable. See how replacing the undesirable materials widely used and proposed for cooling is an opportunity for you but recognise that there is competition for solid state cooling - examples being given.

Chapter 3. "Passive Daytime Radiative Cooling (PDRC)" has 100 pages because it discusses the surge in research through 2025 targeting apparel, windows, solar panels and much more. Understand 40 important advances in 2024-5 and activities of ten companies. Chapter 4. (41 pages) gives the wider picture of radiative cooling including self-adaptive, switchable, tuned, Janus, Anti-Stokes and advanced photonic solid-state cooling. Self-cooled high-power lasers are one Anti-Stokes prospect, possibly for emerging fusion power. Twenty-two wider advances in radiative cooling in 2025 are assessed here. There is a maturity curve of radiative cooling technologies in 2026.

Chapter 5. Caloric cooling by ferroic phase change takes 76 pages due to its importance. Although magnetocaloric forms have long had some commercialisation, the research and industrial interest through 2025 has turned to electrocaloric, and, to a lesser extent, elastocaloric options. This chapter also covers several other options with many comparisons. It concludes that the new focus is commercially appropriate. It explains why multi-mode and giant-caloric versions described here should also be tracked.

Metamaterial cooling now intensely researched

Chapter 6. "Enabling Technology: Metamaterial Cooling Materials and Devices" (54 pages) tracks the enormous recent progress in this aspect, which is largely a better way of serving cooling principles already described. Research is strong but commercialisation is, so far, modest. The basics are explained plus relevance to greenhouse, window, solar panel and personal cooling. Understand the manufacturing technologies, and popularity by formulation in 132 examples of latest thermal metamaterial research.

Thermoelectric cooling reinvented for different uses

Chapter 7 covers future thermoelectric cooling and thermoelectric harvesting as a user of and power provider for other solid-state cooling (53 pages). It explains how this old technology has now progressed to commercial neck coolers, with prospects of wide-area, flexible thermoelectrics and avoidance of toxigens and expensive materials and machining. It is a strong candidate for cooling the new 1kW chips and even researched for buildings. Secondarily, there is coverage of thermoelectric harvesting to power solid-state cooling. Indeed, thermoelectric cooling can be enhanced by other forms of solid-state cooling on its cold side. 20 recent advances in thermoelectric cooling and harvesting involving solid-state cooling are highlighted and 82 manufactures of Peltier cooling thermoelectric modules and products are listed.

Thermal conduction with new materials

The report then closes with Chapter 8 (57 pages) on the allied topics of thermal Interface Materials TIM and other thermal conducting materials and structures. Much of this concerns TIM materials, issues, advances and practicalities emerging plus thermally conducting solids in general with graphics, SWOT appraisals, comparison tables. Seven current TIM options are compared against nine parameters in one table and nine important TIM research advances in 2025 and 2024 are presented. See thermally conductive polymer advances in 2025, companies making thermally conductive additives and progress to more sophisticated thermal composites.

The Zhar Research report, "Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046" is your essential guide to the multi-billion-dollar market that is emerging.

CAPTION: Best passive solid-state cooling technology for reducing temperature 5C to 20C 2026-2046 on current evidence. Source, Zhar Research report, "Solid State Cooling Materials and Systems Radiative, PDRC, Caloric, Thermoelectric, Multimode, Multipurpose, Other: Markets, Technology 2026-2046" .

Table of Contents

1.1. Purpose of this report

  • 1.2. Methodology of this analysis
  • 1.3. Reasons for the escalating need for cooling
  • 1.4. The nature of solid-state cooling and why it is now a priority
  • 1.5. Cooling toolkit and potential winners on current evidence
    • 1.5.1. Cooling toolkit, trend to multimode with best solid-state cooling tools shown red
    • 1.5.2. Best passive solid-state cooling technology for reducing temperature 5C to 40C 2026-2046 on current evidence
    • 1.5.3. Best solid-state cooling technologies for reducing temperature 5C to 50C 2026-2046 on current evidence
  • 1.6. Twenty primary conclusions
    • 1.6.1. Nine candidate solid-state cooling technologies compared and appraised in columns
    • 1.6.2. Primary applications targetted by latest research
    • 1.6.3. Winning materials and principles for solid-state cooling generally
    • 1.6.4. Primary mentions of caloric cooling by type in 94 research papers 2022 through 2025 as an indicator of relative progress
    • 1.6.5. Leading materials in 292 research advances on solid state cooling 2024 through 2025
    • 1.6.6. Potential for replacing vapor compression cooling
    • 1.6.7. Potential for cooling solar panels to increase efficiency
    • 1.6.8. Potential for cooling 6G Communications infrastructure and client devices
    • 1.6.9. Potential for self-cooling lasers
  • 1.7. Best reported and potential temperature drop by different solid-state technologies 2000-2046
  • 1.8. Appraisal of Passive Daytime Radiative Cooling PDRC and allied radiative cooling technologies
    • 1.8.1. SWOT appraisal of passive radiative cooling in general
    • 1.8.2. SWOT appraisal of PDRC with materials analysis
    • 1.8.3. SWOT appraisal of Janus effect for thermal management
    • 1.8.4. SWOT appraisal of anti-Stokes fluorescence cooling
  • 1.9. Appraisal of the leading types of caloric cooling
    • 1.9.1. SWOT appraisal of electrocaloric cooling with materials analysis
    • 1.9.2. SWOT appraisal of elastocaloric cooling
  • 1.10. SWOT appraisal of thermoelectric cooling with materials analysis
  • 1.11. Solid state cooling roadmap by market and by technology 2026-2046
  • 1.12. Market forecasts as tables and graphs 2026-2046
    • 1.12.1. Cooling module global market by seven technologies $ billion 2025-2046
    • 1.12.2. Terrestrial radiative cooling performance in commercial products W/sq. m 2025-2046
    • 1.12.3. Air conditioner value market $ billion 2024-2046
    • 1.12.4. Global market for HVAC, refrigerators, freezers, other cooling $ billion 2025-2046
    • 1.12.5. Refrigerator and freezer value market $ billion 2024-2046
    • 1.12.6. Stationary battery market $ billion and cooling needs 2024-2046
    • 1.12.7. Thermal management material and structure for 6G Communications infrastructure and client devices $ billion if 6G is successful 2026-2046
    • 1.12.8. Dielectric and thermal materials for 6G value market % by location 2029-2046
    • 1.12.9. 5G vs 6G thermal interface material market $ billion 2025-2046
    • 1.12.10. Market for 6G vs 5G base stations units millions yearly 2025-2046
    • 1.12.11. Market for 6G base stations market value $bn if successful 2029-2046
    • 1.12.12. 6G RIS value market $ billion: active and three semi-passive categories 2029-2046
    • 1.12.13. Smartphone billion units sold globally 2024-2046 if 6G is successful
    • 1.12.14. Thermal meta-device market $ billion 2026-2046 by application segment

2. Introduction

  • 2.1. Overview
  • 2.2. Need for cooling becomes much larger and often different in nature
    • 2.2.1. General situation
    • 2.2.2. Infogram: Cooling needs increase for many reasons 2026-2046
  • 2.3. Examples of radical changes in the requirements for cooling 2026-2046
    • 2.3.1. Escalation of demand for air conditioning and forthcoming changes in requirement
    • 2.3.2. Problems becoming severe with traditional cooling inadequate
    • 2.3.3. Further reading on the problems of traditional vapor compression cooling
    • 2.3.4. How 6G Communications from 2030 will bring new cooling requirements: infograms
    • 2.3.5. Severe new microchip cooling requirements arriving
    • 2.3.6. Other cooling problems and opportunities emerging in electronics and ICT
  • 2.4. How cooling technology will trend to smart materials 2026-2046
  • 2.5. Reinventing air conditioning to be lower power, greener, more affordable
  • 2.6. Undesirable materials widely used and proposed: this is an opportunity for you
  • 2.7. Examples of competition for solid state cooling

3. Passive daytime radiative cooling (PDRC)

  • 3.1. Overview
  • 3.2. PDRC basics
  • 3.3. Radiative cooling materials by structure and formulation with research analysis
  • 3.4. Potential benefits and applications
    • 3.4.1. Overall opportunity and progress
    • 3.4.2. Transparent PDRC for facades, solar panels and windows including 8 advances 2024 through 2025
    • 3.4.3. Wearable PDRC, textile and fabric with 15 advances in 2024-5 and SWOT
    • 3.4.4. PDRC cold side boosting power of thermoelectric generators
    • 3.4.5. Color without compromise: advances in 2025 and earlier
    • 3.4.6. Aerogel and porous material approaches
    • 3.4.7. Environmental and inexpensive PDRC materials development
  • 3.5. Other important advances in 2025 and earlier
    • 3.5.1. 40 important advances in 2024-5
    • 3.5.2. Other advances
  • 3.6. Companies commercialising PDRC
    • 3.6.1. 3M USA
    • 3.6.2. BASF Germany
    • 3.6.3. i2Cool USA
    • 3.6.4. LifeLabs USA
    • 3.6.5. Plasmonics USA
    • 3.6.6. Radicool Japan, Malaysia etc.
    • 3.6.7. SkyCool Systems USA
    • 3.6.8. SolCold Israel
    • 3.6.9. Spinoff from University of Massachusetts Amherst USA
    • 3.6.10. SRI USA
  • 3.7. SWOT appraisal of Passive Daytime Radiative Cooling PDRC

4. Wider picture of radiative cooling including self-adaptive, switchable, tuned, Janus, Anti-Stokes and advanced photonic solid-state cooling

  • 4.1. Overview of the bigger picture with SWOT
  • 4.2. Twenty-two wider advances in radiative cooling in 2025
  • 4.3. Maturity curve of radiative cooling technologies in 2026
  • 4.4. Self-adaptive and switchable radiative cooling
    • 4.4.1. Vanadium phase change for self-adaptive versions in recent research
    • 4.4.2. Alternative using liquid crystal
  • 4.5. Tuned radiative cooling using both sides: Janus emitter JET advances in 2024 through 2025 with SWOT
  • 4.6. Anti-Stokes fluorescence cooling advances in 2024 through 2025 with SWOT appraisal
  • 4.7. Advanced photonic cooling and prevention of heating

5. Caloric cooling by ferroic phase change

  • 5.1. Structural and ferroic phase change cooling modes and materials
  • 5.2. Solid-state phase-change cooling potentially competing with other forms in named applications
  • 5.3. The physical principles adjoining caloric cooling
  • 5.4. Operating principles for caloric cooling
  • 5.5. Caloric compared to thermoelectric cooling and winning caloric technologies identified
  • 5.6. Some proposals for work to advance the use of caloric cooling
  • 5.7. Electrocaloric cooling
    • 5.7.1. Overview and SWOT appraisal
    • 5.7.2. Operating principles, device construction, successful materials and form factors
    • 5.7.3. Electrocaloric material popularity in latest research with explanation
    • 5.7.4. Giant electrocaloric effect through 2025
    • 5.7.5. Electrocaloric cooling: issues to address
    • 5.7.6. 10 important advances in 2025
    • 5.7.7. 58 earlier advances
  • 5.8. Magnetocaloric cooling with SWOT appraisal
    • 5.8.1. Overview with progress through 2035
    • 5.8.2. Magnetocaloric cooling in detail with SWOT appraisal
  • 5.9. Mechanocaloric cooling (elastocaloric, barocaloric, twistocaloric) cooling
    • 5.9.1. Elastocaloric cooling overview: operating principle, system design, applications, SWOT
    • 5.9.2. Elastocaloric advances in 2024-5
    • 5.9.3. Barocaloric cooling
  • 5.10. Multicaloric cooling advances in 2025

6. Enabling technology: Metamaterial cooling materials and devices

  • 6.1. Overview
    • 6.1.1. Capabilities
    • 6.1.2. Types of metamaterial thermal management materials by function
    • 6.1.3. Three families of metamaterials overlap
    • 6.1.4. Expanding choice of applications and new market drivers
    • 6.1.5. Examples of thermal metamaterials in recent advances
    • 6.1.6. Greenhouse, window, solar panel and personal cooling with metamaterials
    • 6.1.7. SWOT assessment for metamaterials and metasurfaces generally
    • 6.1.8. SWOT appraisal of thermal metamaterials
  • 6.2. The meta-atom, patterning and static to dynamic thermal transfer
  • 6.3. Primary conclusions; market positioning
  • 6.4. Primary conclusions: leading formulations, functionality and manufacturing technologies
  • 6.5. Popularity by formulation in 132 examples of latest thermal metamaterial research
  • 6.6. Other metamaterial cooling and allied research advances in 2025 and 2024
  • 6.7. Additive manufacturing design, fabrication, property and application

7. Future thermoelectric cooling and thermoelectric harvesting as a user of and power provider for other solid-state cooling

  • 7.1. Basics
    • 7.1.1. Operation, examples
    • 7.1.2. Thermoelectric cooling and temperature control applications 2025 and 2045
    • 7.1.3. SWOT appraisal of thermoelectric cooling, temperature control and harvesting
  • 7.2. Thermoelectric materials
    • 7.2.1. Requirements
    • 7.2.2. Useful and misleading metrics
    • 7.2.3. Quest for better zT performance which is often the wrong approach
    • 7.2.4. Some alternatives to bismuth telluride being considered
    • 7.2.5. Non-toxic and less toxic thermoelectric materials, some lower cost
    • 7.2.6. Ferron and spin driven thermoelectrics
  • 7.3. Wide area and flexible thermoelectric cooling is a gap in the market for you to address
    • 7.3.1. The need and general approaches
    • 7.3.2. Advances in flexible and wide area thermoelectric cooling in 2025 and earlier
    • 7.3.3. Wide area or flexible TEG research 40 examples that may lead to similar TEC
  • 7.4. Radiation cooling of buildings: multifunctional with thermoelectric harvesting
  • 7.5. The heat removal problem of TEC and TEG - evolving solutions
  • 7.6. 20 advances in thermoelectric cooling and harvesting involving cooling
  • 7.7. Earlier advances
  • 7.8. 82 Manufactures of Peltier cooling thermoelectric modules and products

8. Thermal Interface Materials TIM and other thermal conducting materials and structures

  • 8.1. Overview: thermal adhesives to thermally conductive concrete
    • 8.1.1. TIM, heat spreaders from micro to heavy industrial: activity of 17 companies
    • 8.1.2. 17 examples of research advances in 2025 and 2024 relevant to 6G transistors up to buildings
    • 8.1.3. Annealed pyrolytic graphite: progress in 2025 and 2024 as microelectronic TIM
    • 8.1.4. Thermally conductive concrete and allied work
  • 8.2. Important considerations when solving thermal challenges with conductive materials
    • 8.2.1. Bonding or non-bonding
    • 8.2.2. Varying heat
    • 8.2.3. Electrically conductive or not
    • 8.2.4. Placement
    • 8.2.5. Environmental attack
    • 8.2.6. Choosing a thermal structure
    • 8.2.7. Research on embedded cooling
  • 8.3. Thermal Interface Material TIM
    • 8.3.1. General
    • 8.3.2. Seven current options compared against nine parameters
    • 8.3.3. Nine important research advances in 2025 and 2024
    • 8.3.4. Thermal pastes compared
    • 8.3.5. TIM and other examples today: Henkel, Momentive, ShinEtsu, Sekisui, Fujitsu, Suzhou Dasen
    • 8.3.6. 37 examples of TIM manufacturers
    • 8.3.7. Thermal interface material trends as needs change: graphene, liquid metals etc.
  • 8.4. Polymer choices: silicones or carbon-based
    • 8.4.1. Comparison
    • 8.4.2. Silicone parameters, ShinEtsu, patents
    • 8.4.3. SWOT appraisal for silicone thermal conduction materials
  • 8.5. Thermally conductive polymer advances in 2025 and earlier
    • 8.5.1. Overview
    • 8.5.2. Examples of companies making thermally conductive additives
    • 8.5.3. Thermally conductive polymers: pie charts of host materials and particulates prioritised in research
    • 8.5.4. Important progress in 2025 and earlier