电动飞机和电动垂直起降飞行器 (eVTOL) 的未来 - 第二版
市场调查报告书
商品编码
1924856

电动飞机和电动垂直起降飞行器 (eVTOL) 的未来 - 第二版

The Future of Electric Aircraft and eVTOLs - 2nd Edition

出版日期: | 出版商: Berg Insight | 英文 170 Pages | 商品交期: 最快1-2个工作天内

价格

预计 2021 年至 2050 年间,电动飞机和 eVTOL(商用和民用)市场规模将达到 1,000 亿欧元至 3,000 亿欧元。

本报告深入分析了全球电动飞机和 eVTOL 市场,透过对主要公司高管的访谈、对价值炼和关键应用案例的全面描述、42 家电动飞机、eVTOL 和电力推进系统製造商的概况以及到 2050 年的市场预测,提供了相关见解。

目录

图表清单

摘要整理

第一章:引言

  • 航空市场
  • 电动航空概念
  • 飞机和 eVTOL 的发展驱动因素电气化
    • 降低成本
    • 区域旅行市场
    • 减少排放
    • 降低噪音
    • 改善可及性
    • 经济发展

第二章 电动飞机/eVTOL

  • 电动飞机
    • 改装
    • 传统设计
    • 新型设计
    • 尺寸和航程
    • 电池电动/氢燃料电池/油电混合飞机
  • eVTOL
    • 无翼多旋翼飞行器
    • 升力巡航(固定翼)
    • 倾转旋翼(螺旋桨)
  • eVTOL风险评估
    • 认证
    • 基础设施
    • 技术
    • 管理
    • 社会意识

第三章 技术概述

  • 电池电动
  • 氢电
  • 混合动力
  • 机身
  • 通讯技术与自主飞行
    • 导航与通讯系统
    • 物联网连接
    • 自主飞行路径

第四章:生态系与监理架构

  • 生态系统
    • 充电
    • 电池动力面临的挑战
    • 氢能面临的挑战
    • 起降基础设施 - 垂直起降站点
    • 机场基础设施
    • 维修、维修和大修 (MRO)
  • 监理框架
    • 认证和标准化
    • 安全
    • 空域管理
    • 永续性

第五章:区域与城市空中交通

  • 区域空中交通 - 市场成长潜力与应用案例
    • 区域空中交通市场将如何发展 - 各种情景
    • 使用者体验
  • 城市空中交通 - 市场成长潜力与应用案例
    • 城市空中交通市场将如何发展 - 各种情景
    • 使用者体验
  • 对区域和城市规划的影响
    • 教育
    • 许可证
    • 短期城市规划
    • 长期都市规划
    • 区域规划
    • 交通规划与整合

第六章:公司简介与策略

  • eVTOL(电动垂直起降飞行器)
    • Aerofugia(飞航)
    • AIR(空中交通)
    • Archer(弓箭手)
    • Aridge(小鹏航空航空高铁)
    • AutoFlight(自动飞行器)
    • CityAirbus NextGen(城市空中巴士下一代)
    • 亿航(亿航)
    • Eve Air Mobility(易航)
    • Horizo​​n Aircraft(地平线飞机)
    • Jetson(捷信)
    • Job Aviation(乔布航空)
    • LEO Flight(低地球轨道飞行)
    • Lilium(莉莉姆)
    • Pivotal(枢纽)
    • Sambo Motors(桑博汽车)
    • SkyDrive(天空驱动)
    • Skyfly(天空飞行)
    • Supernal(超凡)
    • V-Space(V-Space)
    • Vertical(垂直)航空航天
    • Volocopter
    • Wisk
  • 电动飞机
    • Beta Technologies
    • Bye Aerospace
    • Cosmic Aerospace
    • Electra
    • Electron Aerospace
    • Elysian
    • Eviation Aircraft
    • Heart Aerospace
    • Maeve Aerospace
    • MD Aircraft
    • Pipistrel
    • Vaeridion
    • VoltAero
  • 电动推进系统
    • Ampaire
    • Evolito
    • H55
    • MagniX
    • Safran
    • Wright Electric
    • ZeroAvia

第七章 市场预测与情境分析

  • 市场市场区隔
  • 市场规模
    • 商用电动垂直起降飞行器 (eVTOL)
    • 私人电动垂直起降飞行器 (eVTOL)
    • 1-4座纯电动飞机
    • 5-9人座纯电池/氢燃料电池/油电混合飞机
    • 10人座以上纯电池/氢燃料电池/油电混合飞机
    • 当前电动飞机和电动垂直起降飞行器 (eVTOL) 的非承诺/已确认订单库存
    • 物联网连接
  • 市场价值
    • 电动垂直起降飞行器 (eVTOL) 市场价值
    • 电动飞机市场价值
  • 商业模式与应用案例
  • 结论
  • 缩写和简称列表

How will the market for electric aircraft and eVTOLs evolve in the next 25 years? The total market value of electric aircraft and eVTOLs (commercial and private use) during the time period 2021-2050 is forecasted to reach in the range of Euro 100-300 billion. Get up to date with the latest information about vendors, technology developments, regulations and markets.

Highlights from the report:

  • Insights from numerous executive interviews with market leading companies.
  • Comprehensive description of the electric aircraft and eVTOL value chain and key use cases.
  • Analysis of the ground infrastructure needed and how eVTOLs will be handled in the airspace.
  • In-depth analysis of market trends and key developments.
  • Profiles of 42 electric aircraft, eVTOL and electric propulsion system manufacturers.
  • Summary of the certification process and handling of safety concerns.
  • Market forecasts and scenario analysis lasting until 2050.

Table of Contents

Table of Contents

List of Figures

Executive Summary

1 Introduction

  • 1.1 The aviation market
  • 1.2 The concept of electric aviation
  • 1.3 Drivers behind the electrification of aircraft and eVTOLs
    • 1.3.1 Reduced costs
    • 1.3.2 Regional travel market
    • 1.3.3 Emissions reductions
    • 1.3.4 Noise reductions
    • 1.3.5 Increased accessibility
    • 1.3.6 Economic development

2 Electric Aircraft and eVTOLs

  • 2.1 Electric aircraft
    • 2.1.1 Retrofit
    • 2.1.2 Traditional design
    • 2.1.3 New design
    • 2.1.4 Size versus range
    • 2.1.5 Battery-electric, hydrogen-electric versus hybrid-electric aircraft
  • 2.2 eVTOLs
    • 2.2.1 Wingless multicopter
    • 2.2.2 Lift-and-cruise (fixed wing)
    • 2.2.3 Tilted wing and/or propellers
  • 2.3 Risk assessment regarding eVTOLs
    • 2.3.1 Certification
    • 2.3.2 Infrastructure
    • 2.3.3 Technology
    • 2.3.4 Operations
    • 2.3.5 Public awareness

3 Technology Overview

  • 3.1 Battery-electric
  • 3.2 Hydrogen-electric
  • 3.3 Hybrid-electric
  • 3.4 Airframes
  • 3.5 Communications technology and autonomous flight
    • 3.5.1 Navigation and communications systems
    • 3.5.2 IoT connectivity
    • 3.5.3 A possible pathway to autonomous flights

4 Ecosystem and Regulatory Framework

  • 4.1 Ecosystem
    • 4.1.1 Charging
    • 4.1.2 Battery power challenges
    • 4.1.3 Hydrogen power challenges
    • 4.1.4 Take-off and landing infrastructure - vertiports
    • 4.1.5 Airport infrastructure
    • 4.1.6 MRO
  • 4.2 Regulatory framework
    • 4.2.1 Certification and standardisation
    • 4.2.2 Safety
    • 4.2.3 Airspace management
    • 4.2.4 Sustainability

5 Regional and Urban Air Mobility

  • 5.1 Regional Air Mobility - possible market development and use cases
    • 5.1.1 How will the RAM market evolve - different scenarios
    • 5.1.2 User experience
  • 5.2 Urban Air Mobility - possible market development and use cases
    • 5.2.1 How will the UAM market evolve - different scenarios
    • 5.2.2 User experience
  • 5.3 Implications for regional and city planning
    • 5.3.1 Education
    • 5.3.2 Permits
    • 5.3.3 Short-term city planning
    • 5.3.4 Long-term city planning
    • 5.3.5 Regional planning
    • 5.3.6 Transport planning and integration

6 Company Profiles and Strategies

  • 6.1 eVTOLs
    • 6.1.1 Aerofugia
    • 6.1.2 AIR
    • 6.1.3 Archer
    • 6.1.4 Aridge (XPeng AeroHT)
    • 6.1.5 AutoFlight
    • 6.1.6 CityAirbus NextGen
    • 6.1.7 EHang
    • 6.1.8 Eve Air Mobility
    • 6.1.9 Horizon Aircraft
    • 6.1.10 Jetson
    • 6.1.11 Joby Aviation
    • 6.1.12 LEO Flight
    • 6.1.13 Lilium
    • 6.1.14 Pivotal
    • 6.1.15 Sambo Motors
    • 6.1.16 SkyDrive
    • 6.1.17 Skyfly
    • 6.1.18 Supernal
    • 6.1.19 V-Space
    • 6.1.20 Vertical Aerospace
    • 6.1.21 Volocopter
    • 6.1.22 Wisk
  • 6.2 Electric aircraft
    • 6.2.1 Beta Technologies
    • 6.2.2 Bye Aerospace
    • 6.2.3 Cosmic Aerospace
    • 6.2.4 Electra
    • 6.2.5 Electron Aerospace
    • 6.2.6 Elysian
    • 6.2.7 Eviation Aircraft
    • 6.2.8 Heart Aerospace
    • 6.2.9 Maeve Aerospace
    • 6.2.10 MD Aircraft
    • 6.2.11 Pipistrel
    • 6.2.12 Vaeridion
    • 6.2.13 VoltAero
  • 6.3 Electric propulsion systems
    • 6.3.1 Ampaire
    • 6.3.2 Evolito
    • 6.3.3 H55
    • 6.3.4 MagniX
    • 6.3.5 Safran
    • 6.3.6 Wright Electric
    • 6.3.7 ZeroAvia

7 Market Forecasts and Scenarios

  • 7.1 Market segmentation
  • 7.2 Market size
    • 7.2.1 Commercial eVTOLs
    • 7.2.2 Privately owned eVTOLs
    • 7.2.3 Battery-electric aircraft with 1-4 passenger seats
    • 7.2.4 Battery, hydrogen and hybrid-electric aircraft with 5-9 passenger seats
    • 7.2.5 Battery, hydrogen and hybrid-electric aircraft with 10 or more passenger seats
    • 7.2.6 The current non-binding and firm order stock of electric aircraft and eVTOLs
    • 7.2.7 IoT connectivity
  • 7.3 Market value
    • 7.3.1 Market value of eVTOLs
    • 7.3.2 Market value of electric aircraft
  • 7.4 Business models and use cases
  • 7.5 Concluding remarks
  • List of Acronyms and Abbreviations

List of Figures

  • Figure 1.1: IATA strategy towards net zero
  • Figure 2.1: Example of a retrofit design
  • Figure 2.2: Example of a traditional design
  • Figure 2.3: Example of a new design
  • Figure 2.4: Linear and nodal transportation networks
  • Figure 2.5: Example of wingless multicopter design
  • Figure 2.6: Example of lift-and-cruise design
  • Figure 2.7: Example of tilted propeller design
  • Figure 3.1: Schematic of the main propulsion technologies
  • Figure 3.2: Schematic of energy efficiency for electric and fuel cell propulsion
  • Figure 4.1: The ecosystem of advanced air mobility
  • Figure 4.2: Examples of vertiport designs
  • Figure 4.3: Commercial certification of electric aircraft (forecast)
  • Figure 4.4: Commercial certification of piloted eVTOLs (forecast)
  • Figure 4.5: Sensor technologies to be used for eVTOLs
  • Figure 4.6: eVTOL control centre
  • Figure 5.1: Potential market for different aircraft types
  • Figure 5.2: Commercial implementation steps
  • Figure 5.3: Examples of potential eVTOL use cases
  • Figure 6.1: The number of global eVTOL concepts
  • Figure 6.2: Aerofugia - AE200-100 specifications
  • Figure 6.3: AIR - AIR One for personal use specifications
  • Figure 6.4: A prototype of AIR's two-seat eVTOL for personal use
  • Figure 6.5: Archer - Midnight specifications
  • Figure 6.6: Aridge's Land Aircraft Carrier comprising a land vehicle and an eVTOL
  • Figure 6.7: AutoFlight - V2000EM Prosperity specifications
  • Figure 6.8: EHang - EH216-S and VT35 specifications
  • Figure 6.9: Eve Air Mobility - Eve-100 specifications
  • Figure 6.10: Horizon Aircraft - Cavorite X7 specifications
  • Figure 6.11: Horizon Aircraft's hybrid-electric VTOL with a fan-in-wing design
  • Figure 6.12: Jetson - Jetson ONE specifications
  • Figure 6.13: Joby - S4 specifications
  • Figure 6.14: LEO Flight - JetBike specifications
  • Figure 6.15: Pivotal - Helix specifications
  • Figure 6.16: Pivotal's Helix one-seat eVTOL for personal use
  • Figure 6.17: Sambo Motors - B-33x specifications
  • Figure 6.18: SkyDrive - SD-05 specifications
  • Figure 6.19: Skyfly - Axe specifications
  • Figure 6.20: Supernal - S-A2 specifications
  • Figure 6.21: V-Space - VS-210, VS-300 and VS-500 specifications
  • Figure 6.22: Vertical Aerospace - Valo specifications
  • Figure 6.23: Vertical Aerospace's Valo eVTOL with four passenger seats
  • Figure 6.24: Volocopter - VoloCity and VoloXPro specifications
  • Figure 6.25: Wisk - Generation 6 specifications
  • Figure 6.26: Beta Technologies - Alia CX300 CTOL specifications
  • Figure 6.27: Beta Technologies - Alia A250 VTOL specifications
  • Figure 6.28: Beta Technologies - H500A and V600A electric engine specifications
  • Figure 6.29: Beta Technologies' A250 VTOL in the front and two AX300 CTOLs in the back
  • Figure 6.30: Bye Aerospace - eFlyer 2 specifications
  • Figure 6.31: Bye Aerospace's two-seat electric aircraft
  • Figure 6.32: Electra - EL9 specifications
  • Figure 6.33: Electra's EL9 hybrid-electric aircraft with nine passenger seats
  • Figure 6.34: Electron Aerospace - Electron 5 specifications
  • Figure 6.35: Eviation Aircraft - Alice specifications
  • Figure 6.36: Heart Aerospace - ES-30 specifications
  • Figure 6.37: Maeve Aerospace - MJ500 specifications
  • Figure 6.38: Maeve Aerospace's MJ500 hybrid-electric regional aircraft
  • Figure 6.39: MD Aircraft - MDA1 eViator specifications
  • Figure 6.40: Pipistrel - Velis Electro specifications
  • Figure 6.41: Pipistrel's Velis Electro aircraft with two seats
  • Figure 6.42: Vaeridion - Microliner specifications
  • Figure 6.43: VoltAero - Cassio 330 specifications
  • Figure 6.44: Evolito - Electric motor specifications
  • Figure 6.45: MagniX - EPUs and battery specifications
  • Figure 6.46: Safran - Electric engine specifications
  • Figure 6.47: ZeroAvia - Hydrogen-electric powertrain specifications
  • Figure 7.1: Electric passenger aircraft timeline
  • Figure 7.2: Passenger eVTOL timeline
  • Figure 7.3: Shipments of commercial eVTOLs (2021-2050)
  • Figure 7.4: Shipments of privately owned eVTOLs (2021-2050)
  • Figure 7.5: Shipments of electric aircraft with 1-4 passenger seats (2021-2050)
  • Figure 7.6: Shipments of electric aircraft with 5-9 passenger seats (2021-2050)
  • Figure 7.7: Shipments of electric aircraft with 10 or more passenger seats (2021-2050)
  • Figure 7.8: Connected vehicles in commercial and private use (World 2025-2050)
  • Figure 7.9: Commercial eVTOL market value (2021-2050)
  • Figure 7.10: Private eVTOL market value (2021-2050)
  • Figure 7.11: Market value of electric aircraft with 1-4 passenger seats (2021-2050)
  • Figure 7.12: Market value of electric aircraft with 5-9 passenger seats (2021-2050)
  • Figure 7.13: Market value of electric aircraft with 10 or more passenger seats (2021-2050)
  • Figure 7.14: Use case: eVTOL vertiport in a small city
  • Figure 7.15: Use case: eVTOL vertiport in a dense urban area
  • Figure 7.16: Use case: Regional airport/airfield - an initial scenario