碳回收·利用·储存(CCUS)的全球市场(2025年~2045年)
市场调查报告书
商品编码
1649588

碳回收·利用·储存(CCUS)的全球市场(2025年~2045年)

Global Carbon Capture, Utilization and Storage (CCUS) Market 2025-2045

出版日期: | 出版商: Future Markets, Inc. | 英文 676 Pages, 249 Tables, 156 Figures | 订单完成后即时交付

价格

随着各国和各行业追求净零目标,全球碳捕获、利用和储存 (CCUS) 市场正在获得前所未有的发展势头。减缓气候变迁的努力和政府的支持性政策正在推动成长。目前,市场特点是成熟的工业应用和新技术相结合,捕获能力和利用途径都大幅扩大。

目前市场以点源碳捕获为主,主要集中在发电、水泥生产和氢气生产等工业应用。大型工业公司越来越多地将CCUS技术纳入其脱碳策略,而直接空气捕获(DAC)技术的出现为碳去除和利用提供了新的机会。随着创投资金达到创纪录的水平以及企业对减少碳排放的承诺不断增加,市场投资正在大幅扩张。政府透过美国45Q税收抵免和欧盟创新基金等措施提供的支持正在加速商业部署。中国在开发和部署CCUS技术方面的快速进展正在重塑全球市场格局。目前的商业 CCUS 设施主要集中于提高石油采收率 (EOR) 应用,但新的利用途径越来越受欢迎。该新创公司专注于低成本捕获溶剂、薄膜技术和模组化 DAC 系统。自愿性碳去除信用额度(例如微软斥资 2 亿美元从 Climeworks 购买的信用额度)正在提高透明度并透过区块链追踪创造收入来源。在技​​术进步和低碳产品需求不断增长的推动下,将二氧化碳转化为燃料、化学品和建筑材料是一个不断增长的市场领域。

预计到 2045 年,CCUS 市场将大幅扩张。预测表明,监管要求和项目经济性的提高将推动全球捕获能力的大幅提升。 CCUS 与氢气生产(蓝氢)的整合预计将成为主要驱动力,同时在排放较难减少的工业领域的使用也将增加。技术发展有望降低捕获成本,同时提高效率和可扩展性。材料、製程和整合策略的创新将开启新的市场机会,特别是在直接空气捕获和新的利用途径方面。 CCUS 中心和集群的发展有望解决基础设施课题,并透过共享设施提高专案经济性。

全球范围内加强碳定价机制和日益严格的排放法规将支持市场成长。不断扩大的自愿性碳市场正在为 CCUS 计画创造新的收入来源,企业净零承诺正在鼓励私部门投资。然而,扩大CCUS部署仍存在课题,包括高资本成本、基础设施要求和某些应用的技术障碍。市场的成功将取决于持续的政策支援、技术进步和永续商业模式的发展。

本报告分析了全球碳捕获、利用和储存(CCUS)市场,并对市场趋势、技术发展和成长机会提供了策略见解。

目录

第1章 摘要整理

  • 二氧化碳排放的主要来源
  • 产品的CO2
  • 气候目标的达成
  • 市场促进因素和趋势
  • 目前市场与未来预测
  • CCUS产业的发展(2020年~2025年)
  • CCUS投资
  • 政府的CCUS活动
  • 市场地图
  • 商业CCUS设施,计划
  • CCUS价值链
  • CCUS的主要市场障碍
  • 碳定价
  • 全球市场的预测

第2章 简介

  • 什么是 CCUS?
  • 二氧化碳运输
  • 成本
  • 碳信用额
  • CCUS 技术的生命週期评估 (LCA)
  • 环境影响评估
  • 社会接受度与大众认知

第3章 二氧化碳的回收

  • 二氧化碳捕获技术
  • 恢復率超过 90%
  • 99% 的恢復率
  • 从点源捕捉二氧化碳
  • 主要的碳捕获过程
  • 碳分离技术
  • 机会与障碍
  • 碳捕获的成本
  • 二氧化碳捕获能力
  • 直接空气捕获 (DAC)
  • 混合回收系统 人工智慧在碳捕获的应用
  • 与再生能源系统的整合
  • 移动碳捕获解决方案
  • 碳捕集改造

第4章 二氧化碳的消除

  • 陆地上传统的 CDR
  • 科技 CDR 解决方案
  • 主要的 CDR 方法
  • 新的 CDR 方法
  • 技术就绪水准 (TRL):二氧化碳移除法
  • 碳信用额
  • 碳信用额的类型
  • 价值链
  • 监测、报告和核实
  • 政府政策
  • 生物能源与碳捕获与储存 (BiCRS)
  • 生物能源与碳捕获及控制
  • 增强耐候性
  • 造林/再造林
  • 土壤碳封存 (SCS)
  • 生物炭
  • 海军的 CDR

第5章 二氧化碳的利用

  • 概述
  • 碳利用商业模式
  • 二氧化碳利用途径
  • 转换过程
  • 燃料中的二氧化碳利用
  • 二氧化碳在化学上的应用
  • 建筑和建筑材料中的二氧化碳使用
  • 利用二氧化碳提高生物产量
  • 二氧化碳在提高石油采收率的利用
  • 增强矿化作用
  • 碳利用中的数位解决方案和物联网
  • 区块链在碳交易中的应用
  • 资料中心的碳利用
  • 智慧城市基础设施的整合
  • 新用途
  • 使用了CO2来历的材料的3D列印

第6章 二氧化碳的储存

  • 简介
  • CO2储存地
  • CO2洩漏
  • 全球CO2储存容量
  • CO2储存计划
  • CO2-EOR
  • 成本
  • 课题
  • 储存监控技术
  • 地下储氢的协同效应
  • 进阶建模和模拟
  • 封存地点选择标准
  • 风险评估与管理

第7章 二氧化碳的运输

  • 简介
  • 二氧化碳运输的方法与条件
  • 透过管线运输二氧化碳
  • 透过船舶运输二氧化碳
  • 透过铁路和卡车运输二氧化碳
  • 分析每种方法的成本
  • 智慧型管道网络
  • 交通枢纽与基础设施
  • 安全系统、监控
  • 未来交通技术
  • 企业

第8章 企业简介(企业329公司的简介)

第9章 附录

第10章 参考文献

The global Carbon Capture, Utilization, and Storage (CCUS) market has gained unprecedented momentum as nations and industries align with net-zero goals. is Growth driven by increasing climate change mitigation efforts and supportive government policies. Currently, the market is characterized by a mix of established industrial applications and emerging technologies, with significant expansion in both capture capacity and utilization pathways.

Point source carbon capture dominates the current market, primarily focused on industrial applications including power generation, cement production, and hydrogen manufacturing. Major industrial players are increasingly integrating CCUS technologies into their decarbonization strategies, while the emergence of direct air capture (DAC) technologies is opening new opportunities for carbon removal and utilization. The market is witnessing substantial investment growth, with venture capital funding reaching record levels and increased corporate commitments to carbon reduction. Government support through initiatives like the U.S. 45Q tax credits and the EU's Innovation Fund is accelerating commercial deployment. China's rapid advancement in CCUS technology development and deployment is reshaping the global market landscape. Current commercial CCUS facilities are predominantly focused on enhanced oil recovery (EOR) applications, but new utilization pathways are gaining traction.Start-ups are focusing on low-cost capture solvents, membrane technologies, and modular DAC systems. The voluntary carbon removal credits, exemplified by Microsoft's $200 million purchase from Climeworks, is creating revenue streams, with blockchain-enabled tracking enhancing transparency. The conversion of CO2 into fuels, chemicals, and building materials represents growing market segments, supported by technological advances and increasing demand for low-carbon products.

Looking toward 2045, the CCUS market is expected to expand significantly. Projections indicate a substantial increase in global capture capacity, driven by both regulatory requirements and improving project economics. The integration of CCUS with hydrogen production (blue hydrogen) is expected to be a major growth driver, alongside expanding applications in hard-to-abate industrial sectors. Technological developments are expected to reduce capture costs while improving efficiency and scalability. Innovation in materials, processes, and integration strategies is likely to open new market opportunities, particularly in direct air capture and novel utilization pathways. The development of CCUS hubs and clusters is anticipated to solve infrastructure challenges and improve project economics through shared facilities.

Market growth is supported by strengthening carbon pricing mechanisms and increasingly stringent emissions regulations globally. The voluntary carbon market's expansion is creating additional revenue streams for CCUS projects, while corporate net-zero commitments are driving private sector investment. However, challenges remain in scaling up CCUS deployment, including high capital costs, infrastructure requirements, and technical barriers in some applications. The success of the market will depend on continued policy support, technology advancement, and the development of sustainable business models.

"The Global Carbon Capture, Utilization and Storage (CCUS) Market 2025-2045" report provides a detailed analysis of the global Carbon Capture, Utilization and Storage (CCUS) sector, offering strategic insights into market trends, technology developments, and growth opportunities from 2025 to 2045. The study examines the entire CCUS value chain, from capture technologies to end-use applications and storage solutions. The report delivers in-depth analysis of CCUS technologies, market dynamics, and competitive landscapes across key segments including direct air capture (DAC), point source capture, utilization pathways, and storage solutions. It provides detailed market forecasts, technology assessments, and competitive analysis, supported by extensive primary research and industry expertise.

Contents include:

  • Key Market Segments:
    • Carbon Capture Technologies (post-combustion, pre-combustion, oxy-fuel)
    • Utilization Pathways (fuels, chemicals, building materials, EOR)
    • Storage Solutions (geological storage, mineralization)
    • Direct Air Capture Technologies
    • Transportation Infrastructure
    • End-use Applications
  • Comprehensive coverage of CCUS technologies including:
    • Advanced capture materials and processes
    • Novel separation technologies
    • Utilization pathways and conversion processes
    • Storage monitoring and verification systems
    • Integration with renewable energy systems
    • Artificial intelligence and digital solutions
  • Detailed market metrics including:
    • Global revenue projections (2025-2035)
    • Regional market analysis
    • Technology adoption rates
    • Cost trends and projections
    • Investment landscape
    • Policy and regulatory frameworks
  • Special Focus Areas including:
    • Blue hydrogen production
    • Cement sector applications
    • Maritime carbon capture
    • Direct air capture technologies
    • Biological carbon removal
    • Enhanced oil recovery
    • Construction materials
  • Strategic Insights including:
    • Market opportunities and growth drivers
    • Technology roadmaps
    • Investment trends
    • Regional market dynamics
    • Policy impacts
    • Project economics
  • Applications and End Markets:
    • Power generation
    • Industrial processes
    • Chemical production
    • Building materials
    • Fuel synthesis
    • Agriculture and food production
    • Environmental remediation
  • Regulatory and Policy Analysis:
    • Carbon pricing mechanisms
    • Government initiatives
    • Tax credits and incentives
    • Environmental regulations
    • International agreements
    • Market mechanisms
  • Project Analysis:
    • Operational facilities
    • Projects under development
    • Cost analysis
    • Performance metrics
    • Success factors
    • Case studies
  • Market Drivers and Challenges:
    • Analysis of over 300 companies across the CCUS value chain, including:
      • Technology developers
      • Project developers
      • Industrial users
      • Oil and gas companies
      • Chemical manufacturers
      • Service providers

Companies profiled include: 1point8, 3R-BioPhosphate, 44.01, 8Rivers, Adaptavate, ADNOC, Aeroborn B.V., Aether Diamonds, Again, Air Company, Air Liquide S.A., Air Products and Chemicals Inc., Air Protein, Air Quality Solutions Worldwide DAC, Airca Process Technology, Aircela Inc, AirCapture LLC, Airex Energy, AirHive, Airovation Technologies, Algal Bio Co. Ltd., Algiecel ApS, Algenol, Andes Ag Inc., Aqualung Carbon Capture, Arborea, Arca, Arkeon Biotechnologies, Asahi Kasei, AspiraDAC Pty Ltd., Aspiring Materials, Atoco, Avantium N.V., Avnos Inc., Axens SA, Aymium, Azolla, BASF Group, Barton Blakeley Technologies Ltd., BC Biocarbon, Blue Planet Systems Corporation, BluSky Inc., BP PLC, Breathe Applied Sciences, Bright Renewables, Brilliant Planet, bse Methanol GmbH, C-Capture, C2CNT LLC, C4X Technologies Inc., Cambridge Carbon Capture Ltd., Capchar Ltd., Captura Corporation, Capture6, Carba, CarbiCrete, Carbfix, Carboclave, Carbo Culture, Carbon Blade, Carbon Blue, Carbon CANTONNE, Carbon Capture Inc., Carbon Capture Machine (UK), Carbon Centric AS, Carbon Clean Solutions Limited, Carbon Collect Limited, Carbon Engineering Ltd., Carbon Geocapture Corp, Carbon Infinity Limited, Carbon Limit, Carbon Neutral Fuels, Carbon Re, Carbon Recycling International, Carbon Reform Inc., Carbon Ridge Inc., Carbon Sink LLC, Carbon Upcycling Technologies, Carbon-Zero US LLC, Carbon8 Systems, CarbonBuilt, CarbonCure Technologies Inc., Carbonfex Oy, CarbonFree, Carbonfree Chemicals, Carbonade, Carbonaide Oy, Carbonaught Pty Ltd., CarbonMeta Research Ltd., Carbominer, CarbonOrO Products B.V., CarbonQuest, CarbonScape Ltd., CarbonStar Systems, Carbyon BV, Cella Mineral Storage, Cemvita Factory Inc., CERT Systems Inc., CFOAM Limited, Charm Industrial, Chevron Corporation, China Energy Investment Corporation (CHN Energy), Chiyoda Corporation, Climeworks, CNF Biofuel AS, CO2 Capsol, CO2CirculAir B.V., CO2Rail Company, Compact Carbon Capture AS (Baker Hughes), Concrete4Change, Coval Energy B.V., Covestro AG, C-Quester Inc., Cquestr8 Limited, CyanoCapture, D-CRBN, Decarbontek LLC, Deep Branch Biotechnology, Deep Sky, Denbury Inc., Dimensional Energy, Dioxide Materials, Dioxycle, Earth RepAIR, Ebb Carbon, Ecocera, EcoClosure LLC, ecoLocked GmbH, Econic Technologies Ltd., Eion Carbon, Electrochaea GmbH, Emerging Fuels Technology (EFT), Empower Materials Inc., enaDyne GmbH, Enerkem Inc., Entropy Inc., E-Quester, Equatic, Equinor ASA, Evonik Industries AG, Exomad Green, ExxonMobil, Fairbrics, Fervo Energy, Fluor Corporation, Fortera Corporation, Framergy Inc., FuelCell Energy Inc., Funga, GE Gas Power (General Electric), Giammarco Vetrocoke, Giner Inc., Global Algae Innovations, Global Thermostat LLC, Graphyte, Graviky Labs, GreenCap Solutions AS, Greeniron H2 AB, Greenlyte Carbon Technologies, Green Sequest, greenSand, Gulf Coast Sequestration, Hago Energetics, Haldor Topsoe, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holcene, Holcim Group, Holy Grail Inc., Honeywell, IHI Corporation, Immaterial Ltd., Ineratec GmbH, Infinitree LLC, Innovator Energy, InnoSepra LLC, Inplanet GmbH, InterEarth, ION Clean Energy Inc., Japan CCS Co. Ltd., Jupiter Oxygen Corporation, Kawasaki Heavy Industries Ltd., KC8 Capture Technologies, Krajete GmbH, LanzaJet Inc., Lanzatech, Lectrolyst LLC, Levidian Nanosystems, The Linde Group, Liquid Wind AB, Lithos Carbon, Living Carbon, Loam Bio, Low Carbon Korea and more.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Main sources of carbon dioxide emissions
  • 1.2. CO2 as a commodity
  • 1.3. Meeting climate targets
  • 1.4. Market drivers and trends
  • 1.5. The current market and future outlook
  • 1.6. CCUS Industry developments 2020-2025
  • 1.7. CCUS investments
    • 1.7.1. Venture Capital Funding
      • 1.7.1.1. 2010-2024
      • 1.7.1.2. CCUS VC deals 2022-2025
  • 1.8. Government CCUS initiatives
    • 1.8.1. North America
    • 1.8.2. Europe
    • 1.8.3. Asia
      • 1.8.3.1. Japan
      • 1.8.3.2. Singapore
      • 1.8.3.3. China
  • 1.9. Market map
  • 1.10. Commercial CCUS facilities and projects
    • 1.10.1. Facilities
      • 1.10.1.1. Operational
      • 1.10.1.2. Under development/construction
  • 1.11. CCUS Value Chain
  • 1.12. Key market barriers for CCUS
  • 1.13. Carbon pricing
    • 1.13.1. Compliance Carbon Pricing Mechanisms
    • 1.13.2. Alternative to Carbon Pricing: 45Q Tax Credits
    • 1.13.3. Business models
    • 1.13.4. The European Union Emission Trading Scheme (EU ETS)
    • 1.13.5. Carbon Pricing in the US
    • 1.13.6. Carbon Pricing in China
    • 1.13.7. Voluntary Carbon Markets
    • 1.13.8. Challenges with Carbon Pricing
  • 1.14. Global market forecasts
    • 1.14.1. CCUS capture capacity forecast by end point
    • 1.14.2. Capture capacity by region to 2045, Mtpa
    • 1.14.3. Revenues
    • 1.14.4. CCUS capacity forecast by capture type
    • 1.14.5. Cost projections 2025-2045

2. INTRODUCTION

  • 2.1. What is CCUS?
    • 2.1.1. Carbon Capture
      • 2.1.1.1. Source Characterization
      • 2.1.1.2. Purification
      • 2.1.1.3. CO2 capture technologies
    • 2.1.2. Carbon Utilization
      • 2.1.2.1. CO2 utilization pathways
    • 2.1.3. Carbon storage
      • 2.1.3.1. Passive storage
      • 2.1.3.2. Enhanced oil recovery
  • 2.2. Transporting CO2
    • 2.2.1. Methods of CO2 transport
      • 2.2.1.1. Pipeline
      • 2.2.1.2. Ship
      • 2.2.1.3. Road
      • 2.2.1.4. Rail
    • 2.2.2. Safety
  • 2.3. Costs
    • 2.3.1. Cost of CO2 transport
  • 2.4. Carbon credits
  • 2.5. Life Cycle Assessment (LCA) of CCUS Technologies
  • 2.6. Environmental Impact Assessment
  • 2.7. Social acceptance and public perception

3. CARBON DIOXIDE CAPTURE

  • 3.1. CO2 capture technologies
  • 3.2. >90% capture rate
  • 3.3. 99% capture rate
  • 3.4. CO2 capture from point sources
    • 3.4.1. Energy Availability and Costs
    • 3.4.2. Power plants with CCUS
    • 3.4.3. Transportation
    • 3.4.4. Global point source CO2 capture capacities
    • 3.4.5. By source
    • 3.4.6. Blue hydrogen
      • 3.4.6.1. Steam-methane reforming (SMR)
      • 3.4.6.2. Autothermal reforming (ATR)
      • 3.4.6.3. Partial oxidation (POX)
      • 3.4.6.4. Sorption Enhanced Steam Methane Reforming (SE-SMR)
      • 3.4.6.5. Pre-Combustion vs. Post-Combustion carbon capture
      • 3.4.6.6. Blue hydrogen projects
      • 3.4.6.7. Costs
      • 3.4.6.8. Market players
    • 3.4.7. Carbon capture in cement
      • 3.4.7.1. CCUS Projects
      • 3.4.7.2. Carbon capture technologies
      • 3.4.7.3. Costs
      • 3.4.7.4. Challenges
    • 3.4.8. Maritime carbon capture
  • 3.5. Main carbon capture processes
    • 3.5.1. Materials
    • 3.5.2. Post-combustion
      • 3.5.2.1. Chemicals/Solvents
      • 3.5.2.2. Amine-based post-combustion CO2 absorption
      • 3.5.2.3. Physical absorption solvents
    • 3.5.3. Oxy-fuel combustion
      • 3.5.3.1. Oxyfuel CCUS cement projects
      • 3.5.3.2. Chemical Looping-Based Capture
    • 3.5.4. Liquid or supercritical CO2: Allam-Fetvedt Cycle
    • 3.5.5. Pre-combustion
  • 3.6. Carbon separation technologies
    • 3.6.1. Absorption capture
    • 3.6.2. Adsorption capture
      • 3.6.2.1. Solid sorbent-based CO2 separation
      • 3.6.2.2. Metal organic framework (MOF) adsorbents
      • 3.6.2.3. Zeolite-based adsorbents
      • 3.6.2.4. Solid amine-based adsorbents
      • 3.6.2.5. Carbon-based adsorbents
      • 3.6.2.6. Polymer-based adsorbents
      • 3.6.2.7. Solid sorbents in pre-combustion
      • 3.6.2.8. Sorption Enhanced Water Gas Shift (SEWGS)
      • 3.6.2.9. Solid sorbents in post-combustion
    • 3.6.3. Membranes
      • 3.6.3.1. Membrane-based CO2 separation
      • 3.6.3.2. Post-combustion CO2 capture
        • 3.6.3.2.1. Facilitated transport membranes
      • 3.6.3.3. Pre-combustion capture
    • 3.6.4. Liquid or supercritical CO2 (Cryogenic) capture
      • 3.6.4.1. Cryogenic CO2 capture
    • 3.6.5. Calcium Looping
      • 3.6.5.1. Calix Advanced Calciner
    • 3.6.6. Other technologies
      • 3.6.6.1. LEILAC process
      • 3.6.6.2. CO2 capture with Solid Oxide Fuel Cells (SOFCs)
      • 3.6.6.3. CO2 capture with Molten Carbonate Fuel Cells (MCFCs)
      • 3.6.6.4. Microalgae Carbon Capture
    • 3.6.7. Comparison of key separation technologies
    • 3.6.8. Technology readiness level (TRL) of gas separation technologies
  • 3.7. Opportunities and barriers
  • 3.8. Costs of CO2 capture
  • 3.9. CO2 capture capacity
  • 3.10. Direct air capture (DAC)
    • 3.10.1. Technology description
      • 3.10.1.1. Sorbent-based CO2 Capture
      • 3.10.1.2. Solvent-based CO2 Capture
      • 3.10.1.3. DAC Solid Sorbent Swing Adsorption Processes
      • 3.10.1.4. Electro-Swing Adsorption (ESA) of CO2 for DAC
      • 3.10.1.5. Solid and liquid DAC
    • 3.10.2. Advantages of DAC
    • 3.10.3. Deployment
    • 3.10.4. Point source carbon capture versus Direct Air Capture
    • 3.10.5. Technologies
      • 3.10.5.1. Solid sorbents
      • 3.10.5.2. Liquid sorbents
      • 3.10.5.3. Liquid solvents
      • 3.10.5.4. Airflow equipment integration
      • 3.10.5.5. Passive Direct Air Capture (PDAC)
      • 3.10.5.6. Direct conversion
      • 3.10.5.7. Co-product generation
      • 3.10.5.8. Low Temperature DAC
      • 3.10.5.9. Regeneration methods
    • 3.10.6. Electricity and Heat Sources
    • 3.10.7. Commercialization and plants
    • 3.10.8. Metal-organic frameworks (MOFs) in DAC
    • 3.10.9. DAC plants and projects-current and planned
    • 3.10.10. Capacity forecasts
    • 3.10.11. Costs
    • 3.10.12. Market challenges for DAC
    • 3.10.13. Market prospects for direct air capture
    • 3.10.14. Players and production
    • 3.10.15. Co2 utilization pathways
    • 3.10.16. Markets for Direct Air Capture and Storage (DACCS)
      • 3.10.16.1. Fuels
        • 3.10.16.1.1. Overview
        • 3.10.16.1.2. Production routes
        • 3.10.16.1.3. Methanol
        • 3.10.16.1.4. Algae based biofuels
        • 3.10.16.1.5. CO2-fuels from solar
        • 3.10.16.1.6. Companies
        • 3.10.16.1.7. Challenges
      • 3.10.16.2. Chemicals, plastics and polymers
        • 3.10.16.2.1. Overview
        • 3.10.16.2.2. Scalability
        • 3.10.16.2.3. Plastics and polymers
          • 3.10.16.2.3.1. CO2 utilization products
        • 3.10.16.2.4. Urea production
        • 3.10.16.2.5. Inert gas in semiconductor manufacturing
        • 3.10.16.2.6. Carbon nanotubes
        • 3.10.16.2.7. Companies
      • 3.10.16.3. Construction materials
        • 3.10.16.3.1. Overview
        • 3.10.16.3.2. CCUS technologies
        • 3.10.16.3.3. Carbonated aggregates
        • 3.10.16.3.4. Additives during mixing
        • 3.10.16.3.5. Concrete curing
        • 3.10.16.3.6. Costs
        • 3.10.16.3.7. Companies
        • 3.10.16.3.8. Challenges
      • 3.10.16.4. CO2 Utilization in Biological Yield-Boosting
        • 3.10.16.4.1. Overview
        • 3.10.16.4.2. Applications
          • 3.10.16.4.2.1. Greenhouses
          • 3.10.16.4.2.2. Algae cultivation
          • 3.10.16.4.2.3. Microbial conversion
        • 3.10.16.4.3. Companies
      • 3.10.16.5. Food and feed production
      • 3.10.16.6. CO2 Utilization in Enhanced Oil Recovery
        • 3.10.16.6.1. Overview
          • 3.10.16.6.1.1. Process
          • 3.10.16.6.1.2. CO2 sources
        • 3.10.16.6.2. CO2-EOR facilities and projects
  • 3.11. Hybrid Capture Systems
  • 3.12. Artificial Intelligence in Carbon Capture
  • 3.13. Integration with Renewable Energy Systems
  • 3.14. Mobile Carbon Capture Solutions
  • 3.15. Carbon Capture Retrofitting

4. CARBON DIOXIDE REMOVAL

  • 4.1. Conventional CDR on land
    • 4.1.1. Wetland and peatland restoration
    • 4.1.2. Cropland, grassland, and agroforestry
  • 4.2. Technological CDR Solutions
  • 4.3. Main CDR methods
  • 4.4. Novel CDR methods
  • 4.5. Technology Readiness Level (TRL): Carbon Dioxide Removal Methods
  • 4.6. Carbon Credits
    • 4.6.1. CO2 Utilization
    • 4.6.2. Biochar and Agricultural Products
    • 4.6.3. Renewable Energy Generation
    • 4.6.4. Ecosystem Services
  • 4.7. Types of Carbon Credits
    • 4.7.1. Voluntary Carbon Credits
    • 4.7.2. Compliance Carbon Credits
    • 4.7.3. Corporate commitments
    • 4.7.4. Increasing government support and regulations
    • 4.7.5. Advancements in carbon offset project verification and monitoring
    • 4.7.6. Potential for blockchain technology in carbon credit trading
    • 4.7.7. Prices
    • 4.7.8. Buying and Selling Carbon Credits
      • 4.7.8.1. Carbon credit exchanges and trading platforms
      • 4.7.8.2. Over-the-counter (OTC) transactions
      • 4.7.8.3. Pricing mechanisms and factors affecting carbon credit prices
    • 4.7.9. Certification
    • 4.7.10. Challenges and risks
  • 4.8. Value chain
  • 4.9. Monitoring, reporting, and verification
  • 4.10. Government policies
  • 4.11. Bioenergy with Carbon Removal and Storage (BiCRS)
    • 4.11.1. Advantages
    • 4.11.2. Challenges
    • 4.11.3. Costs
    • 4.11.4. Feedstocks
  • 4.12. BECCS
    • 4.12.1. Technology overview
      • 4.12.1.1. Point Source Capture Technologies for BECCS
      • 4.12.1.2. Energy efficiency
      • 4.12.1.3. Heat generation
      • 4.12.1.4. Waste-to-Energy
      • 4.12.1.5. Blue Hydrogen Production
    • 4.12.2. Biomass conversion
    • 4.12.3. CO2 capture technologies
    • 4.12.4. BECCS facilities
    • 4.12.5. Cost analysis
    • 4.12.6. BECCS carbon credits
    • 4.12.7. Sustainability
    • 4.12.8. Challenges
  • 4.13. Enhanced Weathering
    • 4.13.1. Overview
      • 4.13.1.1. Role of enhanced weathering in carbon dioxide removal
      • 4.13.1.2. CO2 mineralization
    • 4.13.2. Enhanced Weathering Processes and Materials
    • 4.13.3. Enhanced Weathering Applications
    • 4.13.4. Trends and Opportunities
    • 4.13.5. Challenges and Risks
    • 4.13.6. Cost analysis
    • 4.13.7. SWOT analysis
  • 4.14. Afforestation/Reforestation
    • 4.14.1. Overview
    • 4.14.2. Carbon dioxide removal methods
    • 4.14.3. Projects
    • 4.14.4. Remote sensing in A/R
    • 4.14.5. Robotics
    • 4.14.6. Trends and Opportunities
    • 4.14.7. Challenges and Risks
    • 4.14.8. SWOT analysis
  • 4.15. Soil carbon sequestration (SCS)
    • 4.15.1. Overview
    • 4.15.2. Practices
    • 4.15.3. Measuring and Verifying
    • 4.15.4. Trends and Opportunities
    • 4.15.5. Carbon credits
    • 4.15.6. Challenges and Risks
    • 4.15.7. SWOT analysis
  • 4.16. Biochar
    • 4.16.1. What is biochar?
    • 4.16.2. Carbon sequestration
    • 4.16.3. Properties of biochar
    • 4.16.4. Feedstocks
    • 4.16.5. Production processes
      • 4.16.5.1. Sustainable production
      • 4.16.5.2. Pyrolysis
        • 4.16.5.2.1. Slow pyrolysis
        • 4.16.5.2.2. Fast pyrolysis
      • 4.16.5.3. Gasification
      • 4.16.5.4. Hydrothermal carbonization (HTC)
      • 4.16.5.5. Torrefaction
      • 4.16.5.6. Equipment manufacturers
    • 4.16.6. Biochar pricing
    • 4.16.7. Biochar carbon credits
      • 4.16.7.1. Overview
      • 4.16.7.2. Removal and reduction credits
      • 4.16.7.3. The advantage of biochar
      • 4.16.7.4. Prices
      • 4.16.7.5. Buyers of biochar credits
      • 4.16.7.6. Competitive materials and technologies
    • 4.16.8. Bio-oil based CDR
    • 4.16.9. Biomass burial for CO2 removal
    • 4.16.10. Bio-based construction materials for CDR
    • 4.16.11. SWOT analysis
  • 4.17. Ocean-based CDR
    • 4.17.1. Overview
    • 4.17.2. Ocean pumps
    • 4.17.3. CO2 capture from seawater
    • 4.17.4. Ocean fertilisation
    • 4.17.5. Coastal blue carbon
    • 4.17.6. Algal cultivation
    • 4.17.7. Artificial upwelling
    • 4.17.8. MRV for marine CDR
    • 4.17.9. Ocean alkalinisation
    • 4.17.10. Ocean alkalinity enhancement (OAE)
    • 4.17.11. Electrochemical ocean alkalinity enhancement
    • 4.17.12. Direct ocean capture technology
    • 4.17.13. Artificial downwelling
    • 4.17.14. Trends and Opportunities
    • 4.17.15. Ocean-based carbon credits
    • 4.17.16. Cost analysis
    • 4.17.17. Challenges and Risks
    • 4.17.18. SWOT analysis

5. CARBON DIOXIDE UTILIZATION

  • 5.1. Overview
    • 5.1.1. Current market status
  • 5.2. Carbon utilization business models
    • 5.2.1. Benefits of carbon utilization
    • 5.2.2. Market challenges
  • 5.3. Co2 utilization pathways
  • 5.4. Conversion processes
    • 5.4.1. Thermochemical
      • 5.4.1.1. Process overview
      • 5.4.1.2. Plasma-assisted CO2 conversion
    • 5.4.2. Electrochemical conversion of CO2
      • 5.4.2.1. Process overview
    • 5.4.3. Photocatalytic and photothermal catalytic conversion of CO2
    • 5.4.4. Catalytic conversion of CO2
    • 5.4.5. Biological conversion of CO2
    • 5.4.6. Copolymerization of CO2
    • 5.4.7. Mineral carbonation
  • 5.5. CO2-Utilization in Fuels
    • 5.5.1. Overview
    • 5.5.2. Production routes
    • 5.5.3. CO2 -fuels in road vehicles
    • 5.5.4. CO2 -fuels in shipping
    • 5.5.5. CO2 -fuels in aviation
    • 5.5.6. Costs of e-fuel
    • 5.5.7. Power-to-methane
      • 5.5.7.1. Thermocatalytic pathway to e-methane
      • 5.5.7.2. Biological fermentation
      • 5.5.7.3. Costs
    • 5.5.8. Algae based biofuels
    • 5.5.9. DAC for e-fuels
    • 5.5.10. Syngas Production Options
    • 5.5.11. CO2-fuels from solar
    • 5.5.12. Companies
    • 5.5.13. Challenges
    • 5.5.14. Global market forecasts 2025-2045
  • 5.6. CO2-Utilization in Chemicals
    • 5.6.1. Overview
    • 5.6.2. Carbon nanostructures
    • 5.6.3. Scalability
    • 5.6.4. Pathways
      • 5.6.4.1. Thermochemical
      • 5.6.4.2. Electrochemical
        • 5.6.4.2.1. Low-Temperature Electrochemical CO2 Reduction
        • 5.6.4.2.2. High-Temperature Solid Oxide Electrolyzers
        • 5.6.4.2.3. Coupling H2 and Electrochemical CO2 Reduction
      • 5.6.4.3. Microbial conversion
      • 5.6.4.4. Other
        • 5.6.4.4.1. Photocatalytic
        • 5.6.4.4.2. Plasma technology
    • 5.6.5. Applications
      • 5.6.5.1. Urea production
      • 5.6.5.2. CO2-derived polymers
        • 5.6.5.2.1. Pathways
        • 5.6.5.2.2. Polycarbonate from CO2
        • 5.6.5.2.3. Methanol to olefins (polypropylene production)
        • 5.6.5.2.4. Ethanol to polymers
      • 5.6.5.3. Inert gas in semiconductor manufacturing
    • 5.6.6. Companies
    • 5.6.7. Global market forecasts 2025-2045
  • 5.7. CO2-Utilization in Construction and Building Materials
    • 5.7.1. Overview
    • 5.7.2. Market drivers
    • 5.7.3. Key CO2 utilization technologies in construction
    • 5.7.4. Carbonated aggregates
    • 5.7.5. Additives during mixing
    • 5.7.6. Concrete curing
    • 5.7.7. Costs
    • 5.7.8. Market trends and business models
    • 5.7.9. Carbon credits
    • 5.7.10. Companies
    • 5.7.11. Challenges
    • 5.7.12. Global market forecasts
  • 5.8. CO2-Utilization in Biological Yield-Boosting
    • 5.8.1. Overview
    • 5.8.2. CO2 utilization in biological processes
    • 5.8.3. Applications
      • 5.8.3.1. Greenhouses
        • 5.8.3.1.1. CO2 enrichment
      • 5.8.3.2. Algae cultivation
        • 5.8.3.2.1. CO2-enhanced algae cultivation: open systems
        • 5.8.3.2.2. CO2-enhanced algae cultivation: closed systems
      • 5.8.3.3. Microbial conversion
      • 5.8.3.4. Food and feed production
    • 5.8.4. Companies
    • 5.8.5. Global market forecasts 2025-2045
  • 5.9. CO2 Utilization in Enhanced Oil Recovery
    • 5.9.1. Overview
      • 5.9.1.1. Process
      • 5.9.1.2. CO2 sources
    • 5.9.2. CO2-EOR facilities and projects
    • 5.9.3. Challenges
    • 5.9.4. Global market forecasts 2025-2045
  • 5.10. Enhanced mineralization
    • 5.10.1. Advantages
    • 5.10.2. In situ and ex-situ mineralization
    • 5.10.3. Enhanced mineralization pathways
    • 5.10.4. Challenges
  • 5.11. Digital Solutions and IoT in Carbon Utilization
  • 5.12. Blockchain Applications in Carbon Trading
  • 5.13. Carbon Utilization in Data Centers
  • 5.14. Integration with Smart City Infrastructure
  • 5.15. Novel Applications
  • 5.15.1 3D Printing with CO2-derived Materials
    • 5.15.2. CO2 in Energy Storage
    • 5.15.3. CO2 in Electronics Manufacturing

6. CARBON DIOXIDE STORAGE

  • 6.1. Introduction
  • 6.2. CO2 storage sites
    • 6.2.1. Storage types for geologic CO2 storage
    • 6.2.2. Oil and gas fields
    • 6.2.3. Saline formations
    • 6.2.4. Coal seams and shale
    • 6.2.5. Basalts and ultra-mafic rocks
  • 6.3. CO2 leakage
  • 6.4. Global CO2 storage capacity
  • 6.5. CO2 Storage Projects
  • 6.6. CO2 -EOR
    • 6.6.1. Description
    • 6.6.2. Injected CO2
    • 6.6.3. CO2 capture with CO2 -EOR facilities
    • 6.6.4. Companies
    • 6.6.5. Economics
  • 6.7. Costs
  • 6.8. Challenges
  • 6.9. Storage Monitoring Technologies
  • 6.10. Underground Hydrogen Storage Synergies
  • 6.11. Advanced Modelling and Simulation
  • 6.12. Storage Site Selection Criteria
  • 6.13. Risk Assessment and Management

7. CARBON DIOXIDE TRANSPORTATION

  • 7.1. Introduction
  • 7.2. CO2 transportation methods and conditions
  • 7.3. CO2 transportation by pipeline
  • 7.4. CO2 transportation by ship
  • 7.5. CO2 transportation by rail and truck
  • 7.6. Cost analysis of different methods
  • 7.7. Smart Pipeline Networks
  • 7.8. Transportation Hubs and Infrastructure
  • 7.9. Safety Systems and Monitoring
  • 7.10. Future Transportation Technologies
  • 7.11. Companies

8. COMPANY PROFILES(329 company profiles)

9. APPENDICES

  • 9.1. Abbreviations
  • 9.2. Research Methodology
  • 9.3. Definition of Carbon Capture, Utilisation and Storage (CCUS)
  • 9.4. Technology Readiness Level (TRL)

10. REFERENCES

List of Tables

  • Table 1. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends
  • Table 2. Carbon capture, usage, and storage (CCUS) industry developments 2020-2025
  • Table 3. Global Investment in Carbon Capture Technologies (2010-2024)
  • Table 4. CCUS VC deals 2022-2025
  • Table 5. CCUS government funding and investment-10 year outlook
  • Table 6. Demonstration and commercial CCUS facilities in China
  • Table 7. Global commercial CCUS facilities-in operation
  • Table 8. Global commercial CCUS facilities-under development/construction
  • Table 9. Key market barriers for CCUS
  • Table 10. Key compliance carbon pricing initiatives around the world
  • Table 11. CCUS business models: full chain, part chain, and hubs and clusters
  • Table 12. CCUS capture capacity forecast by CO2 endpoint, Mtpa of CO2, to 2045
  • Table 13. Capture capacity by region to 2045, Mtpa
  • Table 14. CCUS revenue potential for captured CO2 offtaker, billion US $ to 2045
  • Table 15. CCUS capacity forecast by capture type, Mtpa of CO2, to 2045
  • Table 16. Point-source CCUS capture capacity forecast by CO2 source sector, Mtpa of CO2, to 2045
  • Table 17. CCUS Cost Projections 2025-2045
  • Table 18. CO2 utilization and removal pathways
  • Table 19. Approaches for capturing carbon dioxide (CO2) from point sources
  • Table 20. CO2 capture technologies
  • Table 21. Advantages and challenges of carbon capture technologies
  • Table 22. Overview of commercial materials and processes utilized in carbon capture
  • Table 23. Methods of CO2 transport
  • Table 24. Comparison of CO2 Transportation Methods
  • Table 25. Estimated capital costs for commercial-scale carbon capture
  • Table 26. Key Milestones in Carbon Market Development
  • Table 27.Carbon Credit Prices by Market
  • Table 28. Carbon Credit Project Types
  • Table 29. Life Cycle Assessment of CCUS Technologies
  • Table 30. Environmental Impact Assessment for CCUS Technologies
  • Table 31. Comparison of CO2 capture technologies
  • Table 32. Typical conditions and performance for different capture technologies
  • Table 33. PSCC technologies
  • Table 34. Point source examples
  • Table 35. Comparison of point-source CO2 capture systems
  • Table 36. Blue hydrogen projects
  • Table 37. Commercial CO2 capture systems for blue H2
  • Table 38. Market players in blue hydrogen
  • Table 39. CCUS Projects in the Cement Sector
  • Table 40. Carbon capture technologies in the cement sector
  • Table 41. Cost and technological status of carbon capture in the cement sector
  • Table 42. Assessment of carbon capture materials
  • Table 43. Chemical solvents used in post-combustion
  • Table 44. Comparison of key chemical solvent-based systems
  • Table 45. Chemical absorption solvents used in current operational CCUS point-source projects
  • Table 46.Comparison of key physical absorption solvents
  • Table 47.Physical solvents used in current operational CCUS point-source projects
  • Table 48. Emerging solvents for carbon capture
  • Table 49. Oxygen separation technologies for oxy-fuel combustion
  • Table 50. Large-scale oxyfuel CCUS cement projects
  • Table 51. Commercially available physical solvents for pre-combustion carbon capture
  • Table 52. Main capture processes and their separation technologies
  • Table 53. Absorption methods for CO2 capture overview
  • Table 54. Commercially available physical solvents used in CO2 absorption
  • Table 55. Adsorption methods for CO2 capture overview
  • Table 56. Solid sorbents explored for carbon capture
  • Table 57. Carbon-based adsorbents for CO2 capture
  • Table 58. Polymer-based adsorbents
  • Table 59. Solid sorbents for post-combustion CO2 capture
  • Table 60. Emerging Solid Sorbent Systems
  • Table 61. Membrane-based methods for CO2 capture overview
  • Table 62. Comparison of membrane materials for CCUS
  • Table 63.Commercial status of membranes in carbon capture
  • Table 64. Membranes for pre-combustion capture
  • Table 65. Status of cryogenic CO2 capture technologies
  • Table 66. Benefits and drawbacks of microalgae carbon capture
  • Table 67. Comparison of main separation technologies
  • Table 68. Technology readiness level (TRL) of gas separation technologies
  • Table 69. Opportunities and Barriers by sector
  • Table 70. DAC technologies
  • Table 71. Advantages and disadvantages of DAC
  • Table 72. Advantages of DAC as a CO2 removal strategy
  • Table 73. Potential for DAC removal versus other carbon removal methods
  • Table 74. Companies developing airflow equipment integration with DAC
  • Table 75. Companies developing Passive Direct Air Capture (PDAC) technologies
  • Table 76. Companies developing regeneration methods for DAC technologies
  • Table 77. DAC companies and technologies
  • Table 78. Global capacity of direct air capture facilities
  • Table 79. DAC technology developers and production
  • Table 80. DAC projects in development
  • Table 81. DACCS carbon removal capacity forecast (million metric tons of CO2 per year), 2024-2045, base case
  • Table 82. DACCS carbon removal capacity forecast (million metric tons of CO2 per year), 2030-2045, optimistic case
  • Table 83. Costs summary for DAC
  • Table 84. Typical cost contributions of the main components of a DACCS system
  • Table 85. Cost estimates of DAC
  • Table 86. Challenges for DAC technology
  • Table 87. DAC companies and technologies
  • Table 88. Example CO2 utilization pathways
  • Table 89. Markets for Direct Air Capture and Storage (DACCS)
  • Table 90. Market overview for CO2 derived fuels
  • Table 91. Compnaies in Methanol Production from CO2
  • Table 92. Microalgae products and prices
  • Table 93. Main Solar-Driven CO2 Conversion Approaches
  • Table 94. Companies in CO2-derived fuel products
  • Table 95. Commodity chemicals and fuels manufactured from CO2
  • Table 96. CO2 utilization products developed by chemical and plastic producers
  • Table 97. Companies in CO2-derived chemicals products
  • Table 98. Carbon capture technologies and projects in the cement sector
  • Table 99. Companies in CO2 derived building materials
  • Table 100. Market challenges for CO2 utilization in construction materials
  • Table 101. Companies in CO2 Utilization in Biological Yield-Boosting
  • Table 102. CO2 sequestering technologies and their use in food
  • Table 103. Applications of CCS in oil and gas production
  • Table 104. AI Applications in Carbon Capture
  • Table 105. Renewable Energy Integration in Carbon Capture
  • Table 106. Mobile Carbon Capture Applications
  • Table 107. Carbon Capture Retrofitting
  • Table 108.Market Drivers for Carbon Dioxide Removal (CDR)
  • Table 109. CDR versus CCUS
  • Table 110. Status and Potential of CDR Technologies
  • Table 111. Main CDR methods
  • Table 112. Novel CDR Methods
  • Table 113.Carbon Dioxide Removal Technology Benchmarking
  • Table 114. Comparison of voluntary and compliance carbon credits
  • Table 115. DACCS carbon credit revenue forecast (million US$), 2024-2045
  • Table 116. Examples of government support and regulations
  • Table 117. Carbon credit prices
  • Table 118. Carbon credit prices by company and technology
  • Table 119. Carbon credit market sizes
  • Table 120. Carbon Credit Exchanges and Trading Platforms
  • Table 121. Challenges and Risks
  • Table 122. CDR Value Chain
  • Table 123. Feedstocks for Bioenergy with Carbon Removal and Storage (BiCRS):
  • Table 124. CO2 capture technologies for BECCS
  • Table 125. Existing and planned capacity for sequestration of biogenic carbon
  • Table 126. Existing facilities with capture and/or geologic sequestration of biogenic CO2
  • Table 127. Challenges of BECCS
  • Table 128.Comparison of enhanced weathering materials
  • Table 129. Enhanced Weathering Applications
  • Table 130. Trends and opportunities in enhanced weathering
  • Table 131. Challenges and risks in enhanced weathering
  • Table 132. Nature-based CDR approaches
  • Table 133. Comparison of A/R and BECCS Solutions
  • Table 134. Status of Forest Carbon Removal Projects
  • Table 135. Companies in robotics in afforestation/reforestation
  • Table 136. Comparison of A/R and BECCS
  • Table 137. Trends and Opportunities in afforestation/reforestation
  • Table 138. Challenges and risks in afforestation/reforestation
  • Table 139. Soil carbon sequestration practices
  • Table 140. Soil sampling and analysis methods
  • Table 141. Remote sensing and modeling techniques
  • Table 142. Carbon credit protocols and standards
  • Table 143. Trends and opportunities in soil carbon sequestration (SCS)
  • Table 144. Key aspects of soil carbon credits
  • Table 145. Challenges and Risks in SCS
  • Table 146. Summary of key properties of biochar
  • Table 147. Biochar physicochemical and morphological properties
  • Table 148. Biochar feedstocks-source, carbon content, and characteristics
  • Table 149. Biochar production technologies, description, advantages and disadvantages
  • Table 150. Comparison of slow and fast pyrolysis for biomass
  • Table 151. Comparison of thermochemical processes for biochar production
  • Table 152. Biochar production equipment manufacturers
  • Table 153. Competitive materials and technologies that can also earn carbon credits
  • Table 154. Bio-oil-based CDR pros and cons
  • Table 155. Ocean-based CDR methods
  • Table 156. Benchmarking of ocean-based CDR methods:
  • Table 157.Ocean-based CDR: biotic methods
  • Table 158. Technology in direct ocean capture
  • Table 159. Future direct ocean capture technologies
  • Table 160. Trends and opportunities in ocean-based CDR
  • Table 161. Challenges and risks in ocean-based CDR
  • Table 162. Carbon utilization revenue forecast by product (US$)
  • Table 163. Carbon utilization business models
  • Table 164. CO2 utilization and removal pathways
  • Table 165. Market challenges for CO2 utilization
  • Table 166. Example CO2 utilization pathways
  • Table 167. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages
  • Table 168. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages
  • Table 169. CO2 derived products via biological conversion-applications, advantages and disadvantages
  • Table 170. Companies developing and producing CO2-based polymers
  • Table 171. Companies developing mineral carbonation technologies
  • Table 172. Comparison of emerging CO2 utilization applications
  • Table 173. Main routes to CO2-fuels
  • Table 174. Market overview for CO2 derived fuels
  • Table 175. Main routes to CO2 -fuels
  • Table 176.Comparison of e-fuels to fossil and biofuels
  • Table 177. Existing and future CO2-derived synfuels (kerosene, diesel, and gasoline) projects.. :
  • Table 178. CO2-Derived Methane Projects
  • Table 179. Power-to-Methane projects worldwide
  • Table 180. Power-to-Methane projects
  • Table 181. Microalgae products and prices
  • Table 182. Syngas Production Options for E-fuels
  • Table 183. Main Solar-Driven CO2 Conversion Approaches
  • Table 184. Companies in CO2-derived fuel products
  • Table 185. CO2 utilization forecast for fuels by fuel type (million tonnes of CO2/year), 2025-2045
  • Table 186. Global revenue forecast for CO2-derived fuels by fuel type (million US$), 2025-2045
  • Table 187. Commodity chemicals and fuels manufactured from CO2
  • Table 188.CO2-derived Chemicals: Thermochemical Pathways
  • Table 189. Thermochemical Methods: CO2-derived Methanol
  • Table 190. CO2-derived Methanol Projects
  • Table 191. CO2-Derived Methanol: Economic and Market Analysis (Next 5-10 Years)
  • Table 192. Electrochemical CO2 Reduction Technologies
  • Table 193. Comparison of RWGS and SOEC Co-electrolysis Routes
  • Table 194. Cost Comparison of CO2 Electrochemical Technologies
  • Table 195. Technology Readiness Level (TRL): CO2U Chemicals
  • Table 196. Companies in CO2-derived chemicals products
  • Table 197. CO2 utilization forecast in chemicals by end-use (million tonnes of CO2/year), 2025-2045
  • Table 198. Global revenue forecast for CO2-derived chemicals by end-use (million US$), 2025-2045
  • Table 199. Carbon capture technologies and projects in the cement sector
  • Table 200. Prefabricated versus ready-mixed concrete markets
  • Table 201. CO2 utilization in concrete curing or mixing
  • Table 202. CO2 utilization business models in building materials
  • Table 203. Companies in CO2 derived building materials
  • Table 204. Market challenges for CO2 utilization in construction materials
  • Table 205. CO2 utilization forecast in building materials by end-use (million tonnes of CO2/year), 2025-2045
  • Table 206. Global revenue forecast for CO2-derived building materials by product (million US$), 2025-2045
  • Table 207. Enrichment Technology
  • Table 208. Food and Feed Production from CO2
  • Table 209. Companies in CO2 Utilization in Biological Yield-Boosting
  • Table 210. CO2 utilization forecast in biological yield-boosting by end-use (million tonnes of CO2 per year), 2025-2045
  • Table 211. Global revenue forecast for CO2 use in biological yield-boosting by end-use (million US$), 2025-2045
  • Table 212. Applications of CCS in oil and gas production
  • Table 213. CO2 utilization forecast in enhanced oil recovery (million tonnes of CO2/year), 2025-2045
  • Table 214. Global revenue forecast for CO2-enhanced oil recovery (billion US$), 2025-2045
  • Table 215. CO2 EOR/Storage Challenges
  • Table 216. Digital and IoT Applications in Carbon Utilization
  • Table 217. Blockchain Applications in Carbon Trading
  • Table 218. Carbon Utilization Strategies in Data Centers
  • Table 219. CCU Integration in Smart City Infrastructure
  • Table 220. CO2-derived Materials in 3D Printing
  • Table 221. CO2 Applications in Energy Storage
  • Table 222. CO2 Applications in Electronics Manufacturing
  • Table 223. Storage and utilization of CO2
  • Table 224. Mechanisms of subsurface CO2 trapping
  • Table 225. Global depleted reservoir storage projects
  • Table 226. Global CO2 ECBM storage projects
  • Table 227. CO2 EOR/storage projects
  • Table 228. Global storage sites-saline aquifer projects
  • Table 229. Global storage capacity estimates, by region
  • Table 230. MRV Technologies and Costs in CO2 Storage
  • Table 231. Carbon storage challenges
  • Table 232. Status of CO2 Storage Projects
  • Table 233. Types of CO2 -EOR designs
  • Table 234. CO2 capture with CO2 -EOR facilities
  • Table 235. CO2 -EOR companies
  • Table 236. Carbon Capture Storage Monitoring Technologies
  • Table 237. Storage Site Selection Criteria
  • Table 238. Phases of CO2 for transportation
  • Table 239. CO2 transportation methods and conditions
  • Table 240. Status of CO2 transportation methods in CCS projects
  • Table 241. CO2 pipelines Technical challenges
  • Table 242. Cost comparison of CO2 transportation methods
  • Table 243. Components of Smart Pipeline Networks
  • Table 244. Components of CO2 Transportation Hubs
  • Table 245. CO2 Pipeline Safety Systems and Monitoring
  • Table 246. Emerging CO2 Transportation Technologies
  • Table 247. CO2 transport operators
  • Table 248. List of abbreviations
  • Table 249. Technology Readiness Level (TRL) Examples.

List of Figures

  • Figure 1. Carbon emissions by sector
  • Figure 2. Overview of CCUS market
  • Figure 3. CCUS business model
  • Figure 4. Pathways for CO2 use
  • Figure 5. Regional capacity share 2025-2035
  • Figure 6. Global investment in carbon capture 2010-2024, millions USD
  • Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map
  • Figure 8. CCS deployment projects, historical and to 2035
  • Figure 9. Existing and planned CCS projects
  • Figure 10. CCUS Value Chain
  • Figure 11. Schematic of CCUS process
  • Figure 12. Pathways for CO2 utilization and removal
  • Figure 13. A pre-combustion capture system
  • Figure 14. Carbon dioxide utilization and removal cycle
  • Figure 15. Various pathways for CO2 utilization
  • Figure 16. Example of underground carbon dioxide storage
  • Figure 17. Transport of CCS technologies
  • Figure 18. Railroad car for liquid CO2 transport
  • Figure 19. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector
  • Figure 20. Cost of CO2 transported at different flowrates
  • Figure 21. Cost estimates for long-distance CO2 transport
  • Figure 22. CO2 capture and separation technology
  • Figure 23. Global capacity of point-source carbon capture and storage facilities
  • Figure 24. Global carbon capture capacity by CO2 source, 2023
  • Figure 25. Global carbon capture capacity by CO2 source, 2045
  • Figure 26. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS)
  • Figure 27. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant
  • Figure 28. POX process flow diagram
  • Figure 29. Process flow diagram for a typical SE-SMR
  • Figure 30. Post-combustion carbon capture process
  • Figure 31. Post-combustion CO2 Capture in a Coal-Fired Power Plant
  • Figure 32. Oxy-combustion carbon capture process
  • Figure 33. Process schematic of chemical looping
  • Figure 34. Liquid or supercritical CO2 carbon capture process
  • Figure 35. Pre-combustion carbon capture process
  • Figure 36. Amine-based absorption technology
  • Figure 37. Pressure swing absorption technology
  • Figure 38. Membrane separation technology
  • Figure 39. Liquid or supercritical CO2 (cryogenic) distillation
  • Figure 40. Cryocap(TM) process
  • Figure 41. Calix advanced calcination reactor
  • Figure 42. LEILAC process
  • Figure 43. Fuel Cell CO2 Capture diagram
  • Figure 44. Microalgal carbon capture
  • Figure 45. Cost of carbon capture
  • Figure 46. CO2 capture capacity to 2030, MtCO2
  • Figure 47. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030
  • Figure 48. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse
  • Figure 49. Global CO2 capture from biomass and DAC in the Net Zero Scenario
  • Figure 50. DAC technologies
  • Figure 51. Schematic of Climeworks DAC system
  • Figure 52. Climeworks' first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland
  • Figure 53. Flow diagram for solid sorbent DAC
  • Figure 54. Direct air capture based on high temperature liquid sorbent by Carbon Engineering
  • Figure 55. Schematic of costs of DAC technologies
  • Figure 56. DAC cost breakdown and comparison
  • Figure 57. Operating costs of generic liquid and solid-based DAC systems
  • Figure 58. Co2 utilization pathways and products
  • Figure 59. Conversion route for CO2-derived fuels and chemical intermediates
  • Figure 60. Conversion pathways for CO2-derived methane, methanol and diesel
  • Figure 61. CO2 feedstock for the production of e-methanol
  • Figure 62. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c
  • Figure 63. Audi synthetic fuels
  • Figure 64. Conversion of CO2 into chemicals and fuels via different pathways
  • Figure 65. Conversion pathways for CO2-derived polymeric materials
  • Figure 66. Conversion pathway for CO2-derived building materials
  • Figure 67. Schematic of CCUS in cement sector
  • Figure 68. Carbon8 Systems' ACT process
  • Figure 69. CO2 utilization in the Carbon Cure process
  • Figure 70. Algal cultivation in the desert
  • Figure 71. Example pathways for products from cyanobacteria
  • Figure 72. Typical Flow Diagram for CO2 EOR
  • Figure 73. Large CO2-EOR projects in different project stages by industry
  • Figure 74. Bioenergy with carbon capture and storage (BECCS) process
  • Figure 75. SWOT analysis: enhanced weathering
  • Figure 76. SWOT analysis: afforestation/reforestation
  • Figure 77. SWOT analysis: SCS
  • Figure 78. Schematic of biochar production
  • Figure 79. Biochars from different sources, and by pyrolyzation at different temperatures
  • Figure 80. Compressed biochar
  • Figure 81. Biochar production diagram
  • Figure 82. Pyrolysis process and by-products in agriculture
  • Figure 83. SWOT analysis: Biochar for CDR
  • Figure 84. SWOT analysis: ocean-based CDR
  • Figure 85. CO2 non-conversion and conversion technology, advantages and disadvantages
  • Figure 86. Applications for CO2
  • Figure 87. Cost to capture one metric ton of carbon, by sector
  • Figure 88. Life cycle of CO2-derived products and services
  • Figure 89. Co2 utilization pathways and products
  • Figure 90. Plasma technology configurations and their advantages and disadvantages for CO2 conversion
  • Figure 91. Electrochemical CO2 reduction products
  • Figure 92. LanzaTech gas-fermentation process
  • Figure 93. Schematic of biological CO2 conversion into e-fuels
  • Figure 94. Econic catalyst systems
  • Figure 95. Mineral carbonation processes
  • Figure 96. Conversion route for CO2-derived fuels and chemical intermediates
  • Figure 97. Conversion pathways for CO2-derived methane, methanol and diesel
  • Figure 98. SWOT analysis: e-fuels
  • Figure 99. CO2 feedstock for the production of e-methanol
  • Figure 100. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c
  • Figure 101. Audi synthetic fuels
  • Figure 102. Conversion of CO2 into chemicals and fuels via different pathways
  • Figure 103. Conversion pathways for CO2-derived polymeric materials
  • Figure 104. Conversion pathway for CO2-derived building materials
  • Figure 105. Schematic of CCUS in cement sector
  • Figure 106. Carbon8 Systems' ACT process
  • Figure 107. CO2 utilization in the Carbon Cure process
  • Figure 108. Algal cultivation in the desert
  • Figure 109. Example pathways for products from cyanobacteria
  • Figure 110. Typical Flow Diagram for CO2 EOR
  • Figure 111. Large CO2-EOR projects in different project stages by industry
  • Figure 112. Carbon mineralization pathways
  • Figure 113. CO2 Storage Overview - Site Options
  • Figure 114. CO2 injection into a saline formation while producing brine for beneficial use
  • Figure 115. Subsurface storage cost estimation
  • Figure 116. Air Products production process
  • Figure 117. ALGIECEL PhotoBioReactor
  • Figure 118. Schematic of carbon capture solar project
  • Figure 119. Aspiring Materials method
  • Figure 120. Aymium's Biocarbon production
  • Figure 121. Capchar prototype pyrolysis kiln
  • Figure 122. Carbonminer technology
  • Figure 123. Carbon Blade system
  • Figure 124. CarbonCure Technology
  • Figure 125. Direct Air Capture Process
  • Figure 126. CRI process
  • Figure 127. PCCSD Project in China
  • Figure 128. Orca facility
  • Figure 129. Process flow scheme of Compact Carbon Capture Plant
  • Figure 130. Colyser process
  • Figure 131. ECFORM electrolysis reactor schematic
  • Figure 132. Dioxycle modular electrolyzer
  • Figure 133. Fuel Cell Carbon Capture
  • Figure 134. Topsoe's SynCORTM autothermal reforming technology
  • Figure 135. Heirloom DAC facilities
  • Figure 136. Carbon Capture balloon
  • Figure 137. Holy Grail DAC system
  • Figure 138. INERATEC unit
  • Figure 139. Infinitree swing method
  • Figure 140. Audi/Krajete unit
  • Figure 141. Made of Air's HexChar panels
  • Figure 142. Mosaic Materials MOFs
  • Figure 143. Neustark modular plant
  • Figure 144. OCOchem's Carbon Flux Electrolyzer
  • Figure 145. ZerCaL(TM) process
  • Figure 146. CCS project at Arthit offshore gas field
  • Figure 147. RepAir technology
  • Figure 148. Aker (SLB Capturi) carbon capture system
  • Figure 149. Soletair Power unit
  • Figure 150. Sunfire process for Blue Crude production
  • Figure 151. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right)
  • Figure 152. Takavator
  • Figure 153. O12 Reactor
  • Figure 154. Sunglasses with lenses made from CO2-derived materials
  • Figure 155. CO2 made car part
  • Figure 156. Molecular sieving membrane