6G的全球市场(2026年~2046年)
市场调查报告书
商品编码
1856788

6G的全球市场(2026年~2046年)

The Global 6G Market 2026-2046

出版日期: | 出版商: Future Markets, Inc. | 英文 386 Pages, 224 Tables, 24 Figures | 订单完成后即时交付

价格

全球 6G 市场蕴藏着变革性的机遇,它将从 2026 年的实验性部署逐步发展,并在 2030-2031 年的快速增长期迎来爆发式的商业增长,随后随着市场成熟,在 2046 年前实现可持续扩张。这一发展趋势反映了无线基础设施的根本性重构,其驱动力包括原生 AI 网路架构、透过可重构智能表面实现的分散式智能,以及取代传统按使用付费模式的基于价值的连接模式。在预测期内,市场组成将发生显着变化。虽然基础设施硬体在早期阶段仍将占主导地位,但随着产业从资本密集型建设转向采用迭代式管理服务、边缘运算平台和大众市场设备,服务和设备的占有率将逐步扩大。随着营运商成功地将 AI 驱动的优化、网路切片和应用赋能平台货币化,服务转型将显得尤为重要,最终使可预测的订阅收入超过基础设施资本支出。

技术创新将从根本上改变网路经济格局。可重构智慧表面透过被动式讯号控制,以远低于传统基地台部署的成本,彻底革新了讯号覆盖范围的扩展。亚太赫兹组件、热管理解决方案和先进材料,解决了远高于 5G 频率运作所面临的极端技术挑战,为专业组件製造商和材料供应商创造了巨大的机会。应用的多样性验证了 6G 在多个产业的价值主张。企业自动化、远距医疗、自动驾驶汽车、XR 体验和大规模物联网部署等应用案例,充分证明了基础设施投资的合理性。工业和企业应用愿意为超低延迟和高可靠性支付溢价,这将推动 6G 的早期普及;而随着设备生态系统的成熟和大众市场经济效益的提升,消费应用也将随之加速发展。

全球 6G 通讯市场正见证着人工智慧与无线基础设施的革命性融合,英伟达对诺基亚的 10 亿美元里程碑式投资以及两家公司为开发下一代 6G 蜂窝技术而建立的战略合作伙伴关係便是例证。这项合作远不止于简单的财务交易;它标誌着通讯产业架构的根本性转变,即朝向原生人工智慧网路迈进,机器学习演算法被嵌入到网路协定堆迭的每一层,从物理层讯号处理到自主网路编排。

人工智慧整合的战略重要性源自于 6G 前所未有的复杂性。 6G 网路的工作频率范围从 7 GHz 到亚太赫兹(100-300 GHz),必须协调包含数千个单元的大规模 MIMO 天线阵列,编排混合地面和卫星网络,并动态配置包含数千个可独立控制单元的超材料 RIS 面板。只有能够处理海量感测器资料流并做出微秒级决策的人工智慧系统才能实现 6G 的宏伟目标:峰值速率超过 1 Tbps,延迟低于 100 微秒,能源效率比 5G 高 100 倍。

本报告深入探讨了全球 6G 市场,全面分析了技术路线图、市场预测、关键材料和竞争格局。

目录

第1章 摘要整理

  • 从 1G 到 6G
  • 人工智慧原生 6G 革命
  • 从 5G 网路演进
  • 6G 市场(2025 年)
  • 6G 市场展望
  • 市场驱动因素与趋势
  • 市场挑战与瓶颈
  • 关于 6G 通讯系统和硬体的主要结论
  • 路线图
  • 全球市场收入(至 2046 年)
  • 应用
  • 6G 地理市场
  • 主要市场参与者
  • 各国 6G 项目
  • 6G 的可持续性

第2章 简介

  • 什么是 6G?
  • 行动通讯演进
  • 5G部署
  • 多维度价值主张
  • 6G潜在高价值应用
  • 应用程式及频宽需求
  • 人工智慧对网路流量的影响
  • 自动驾驶汽车
  • 6G部署时间表
  • 6G频段
  • 100 GHz以上频率
  • 科技相互依存关係
  • 全球趋势

第3章 6G无线系统

  • 高资料速率6G无线技术目标
  • 6G收发器架构
  • 6G无线系统技术要素
  • 频宽与调製
  • 支援100Gbps至1Tbps无线速率的频宽需求
  • 频宽与MIMO
  • 6G无线效能
  • 超越 100Gbps
  • 无线链路范围与系统增益
  • 硬体差距
  • 饱和输出功率与频率的关係
  • 功耗

第4章 基地台与非地上网路

  • UM-MIMO 和基地台遗失
  • 卫星和无人机
  • 无人机互联网
  • 高空平台站 (HAPS)
  • 6G 非地面网路 (NTN)

第5章 6G半导体

  • 简介
  • 射频电晶体性能
  • 硅基半导体
  • 砷化镓 (GaAs) 和氮化镓 (GaN)
  • 磷化铟 (InP)
  • 半导体面临的挑战太赫兹通信
  • 半导体供应链

第6章 6G阶段阵列天线

  • 6G天线的关键要求
  • 毫米波相控阵系统所面临的挑战
  • 天线架构
  • 6G天线面临的挑战
  • 功率和天线阵列尺寸
  • 5G相控阵天线
  • 天线製造商
  • 技术基准
  • GHz相控阵天线
  • 天线类型
  • 相控阵模组

第7章 6G先进包装

  • 演进驱动因素
  • 封装要求
  • 天线封装技术选项
  • 毫米波天线整合
  • 下一代相控阵目标
  • 天线封装与工作频率
  • 整合技术
  • InP-on-CMOS 整合方法
  • 天线整合挑战
  • AiP 的基板材料
  • 用于 6G 的片上天线 (AoC)
  • 硬体组件从 5G 到 6G 的演进

第8章 6G材料·技术

  • 材料挑战领域
  • 6G ZED 化合物与碳同素异形体
  • 散热和导热材料
  • 用于 6G 的热超材料
  • 用于 6G 的离子凝胶
  • 先进的热绝缘材料
  • 低损耗介电材料
  • 光学和亚太赫兹材料6G 材料
  • 用于 6G RIS 的超材料
  • 用于 6G OTA 和 T-RIS 的电气化透明玻璃
  • 用于毫米波和太赫兹的低损耗材料
  • 无机化合物
  • 元素
  • 有机化合物
  • 6G 介电材料
  • 超材料
  • 热管理
  • 石墨烯和二维材料
  • 光纤
  • 智慧型电磁元件
  • 光敏感材料
  • 碳化硅
  • 相变材料
  • 二氧化钒
  • 微机械、MEMS 与微流控
  • 固态冷却

第9章 6GMIMO

  • 无线通讯中的 MIMO
  • 挑战mMIMO
  • 分散式 MIMO
  • 无蜂巢大规模 MIMO(大规模分布式 MIMO)
  • 6G 大规模 MIMO
  • 无蜂巢 MIMO
  • 无蜂巢 MIMO 的优点与挑战
  • 无蜂巢大规模 MIMO

第10章 零能源设备(ZED)和电池的废止

  • 概要
  • ZED相关技术
  • 零能源,无电池6G
  • 无线网路的电力消耗
  • 技术
  • 6G ZED材料和技术

第11章 6G开发蓝图

  • 6G 频段
  • 美国联邦频段
  • 监理环境(2025)
  • 独立组网 (SA) 与非独立组网 (NSA) 部署
  • 针对 6G 的开放式无线接取网路 (Open RAN)
  • 欧洲频谱竞争
  • 全球政府 6G 倡议
  • 韩国 6G 发展蓝图
  • 日本 6G 发展蓝图
  • 下一代行动通讯基础设施研究的融资模式
  • 美国 6G 发展蓝图

第12章 企业简介

  • AALTO HAPS
  • AGC Japan
  • Alcan Systems
  • Alibaba China
  • Alphacore
  • Ampleon
  • Apple
  • Atheraxon
  • Commscope
  • Echodyne
  • Ericsson
  • Fractal Antenna Systems
  • Freshwave
  • Fujitsu
  • Greenerwave
  • Huawei
  • Kymeta
  • Kyocera
  • LATYS Intelligence
  • LG Electronics
  • META
  • NEC Corporation
  • Nokia
  • NTT DoCoMo
  • NXP Semiconductors
  • NVIDIA
  • Omniflow
  • Orange France
  • Panasonic
  • Picocom
  • Pivotal Commware
  • Plasmonics
  • Qualcomm
  • Radi-Cool
  • Renesas Electronics Corporation
  • Samsung
  • Sekisui
  • SensorMetrix
  • SK telecom
  • Solvay
  • Sony
  • Teraview
  • TMYTEK
  • Vivo Mobile Communications
  • ZTE

第13章 调查手法

第14章 参考文献

The global 6G market represents a transformational opportunity evolving from experimental deployments in 2026 through explosive commercial growth during 2030-2031 launch phases, before moderating to sustainable expansion as markets mature through 2046. This evolution reflects fundamental reimagining of wireless infrastructure driven by AI-native network architectures, distributed intelligence through Reconfigurable Intelligent Surfaces, and value-based connectivity models replacing traditional volume-driven pricing. Market composition shifts dramatically throughout the forecast period. Infrastructure hardware dominates early phases but services and devices progressively capture larger shares as the industry transitions from capital-intensive buildouts to recurring managed services, edge computing platforms, and mass-market device adoption. The services transformation proves particularly significant as operators successfully monetize AI-driven optimization, network slicing, and application enablement platforms generating predictable subscription revenues that eventually exceed infrastructure equipment spending.

Technology innovation fundamentally reshapes network economics. Reconfigurable Intelligent Surfaces revolutionize coverage extension through passive signal manipulation costing fractions of traditional base station deployments. Sub-terahertz components, thermal management solutions, and advanced materials address extreme technical challenges of operating at frequencies substantially higher than 5G, creating substantial opportunities for specialized component manufacturers and materials suppliers. Application diversity validates 6G's value proposition across multiple verticals. Enterprise automation, healthcare telemedicine, autonomous vehicles, extended reality experiences, and massive IoT deployments demonstrate compelling use cases that justify infrastructure investments. Industrial and enterprise applications drive early adoption with willingness to pay premium pricing for guaranteed ultra-low latency and reliability, while consumer applications accelerate later as device ecosystems mature and mass-market economics enable broad adoption.

The global 6G communications market is experiencing a transformative convergence of artificial intelligence and wireless infrastructure, exemplified by Nvidia's landmark $1 billion investment in Nokia and their strategic partnership to develop next-generation 6G cellular technology. This collaboration represents far more than a financial transaction-it signals the telecommunications industry's fundamental architectural shift toward AI-native networks where machine learning algorithms are embedded throughout every layer of the network stack, from physical layer signal processing to autonomous network orchestration.

The strategic importance of AI integration stems from 6G's unprecedented complexity. Operating at frequencies from 7 GHz through sub-terahertz bands (100-300 GHz), 6G networks must coordinate massive MIMO antenna arrays with thousands of elements, orchestrate hybrid terrestrial-satellite networks, and dynamically configure metamaterial RIS panels containing thousands of individually controllable elements. Manual network optimization at this scale proves impossible; only AI systems capable of processing vast sensor data streams and making microsecond-level decisions can achieve 6G's ambitious targets: peak rates exceeding 1 Tbps, latency below 100 microseconds, and energy efficiency 100 times greater than 5G.

"The Global 6G Market 2026-2046" provides authoritative intelligence on the emerging sixth-generation wireless communications market, delivering comprehensive analysis of technology roadmaps, market forecasts, enabling materials, and competitive dynamics shaping this $830 billion opportunity. This 380-page plus report addresses critical questions facing telecommunications operators, equipment vendors, semiconductor manufacturers, materials suppliers, and investors seeking to capitalize on the transformative shift from 5G to 6G networks expected to commercialize between 2028-2030.

The report delivers granular market forecasts segmented by infrastructure type (base stations, reconfigurable intelligent surfaces, customer premises equipment), devices (smartphones, AR/VR headsets, automotive modules, IoT sensors), components and materials (RF front-end semiconductors, advanced substrates, thermal management solutions), and services (network deployment, managed operations, edge computing platforms). Geographic analysis covers North America, Asia Pacific (China, Japan, South Korea, India), Europe, and emerging markets, with detailed assessment of regional deployment strategies, government funding initiatives, and spectrum allocation progress.

Extensive technical analysis evaluates critical enabling technologies including sub-terahertz semiconductors (InP, GaN, SiGe), reconfigurable intelligent surfaces and metamaterials, massive MIMO and cell-free architectures, AI-native network optimization, zero-energy devices and ambient backscatter communications, advanced packaging approaches (antenna-in-package, antenna-on-chip), and thermal management solutions addressing extreme heat dissipation challenges at 100-300 GHz frequencies. The report identifies technology readiness levels, development bottlenecks, and commercialization timelines for each critical component.

Market driver analysis examines application opportunities across autonomous vehicles, industrial automation, healthcare telemedicine, extended reality experiences, holographic communications, and persistent AR overlays-quantifying bandwidth requirements, latency constraints, and revenue potential for each vertical. Competitive landscape assessment profiles strategies of leading equipment vendors (Huawei, Nokia, Ericsson, Samsung), semiconductor manufacturers (Qualcomm, NXP, Renesas), innovative antenna and metamaterial specialists, and telecommunications operators planning 6G deployments.

Sustainability analysis addresses 6G's ambitious target of 100x improved energy efficiency versus 5G baseline, evaluating power consumption roadmaps, renewable energy integration strategies, and carbon footprint reduction pathways essential for environmental and economic viability. The report incorporates primary research from industry stakeholders, technical publications from standards bodies (3GPP, ITU-R), government research programs, patent analysis, and academic research, providing evidence-based projections through 2046.

Report Contents Include:

  • Market Analysis & Forecasts:
    • Global 6G market revenue forecasts 2026-2046 with annual projections
    • Infrastructure market segmentation by deployment location and region
    • Device market forecasts by category with unit shipment projections
    • Components and materials market analysis by technology type
    • Services market evolution and recurring revenue opportunities
    • Application-specific market sizing across 10+ vertical segments
    • Regional market analysis with country-level detail for major markets
  • Technology Assessment:
    • 6G radio system architecture and performance targets
    • Semiconductor technology comparison (InP, GaN, GaAs, SiGe, CMOS)
    • Reconfigurable intelligent surfaces (RIS) and metamaterial roadmaps
    • Phased array antenna technologies and packaging approaches
    • Advanced materials enabling 6G (low-loss dielectrics, thermal management)
    • MIMO evolution from massive to cell-free architectures
    • Zero-energy devices and battery elimination strategies
    • Non-terrestrial networks (satellites, HAPS, drones) integration
  • Strategic Intelligence:
    • Government 6G programs and funding initiatives by country
    • Spectrum allocation status and World Radiocommunication Conference roadmap
    • Standards development timeline and technology readiness assessment
    • Competitive positioning of major equipment vendors and semiconductor suppliers
    • Deployment strategies comparing standalone versus non-standalone approaches
    • Open RAN evolution and regional adoption strategies
    • Sustainability targets and power efficiency improvement roadmaps
  • Application Analysis:
    • Connected autonomous vehicle systems and cooperative perception
    • Industrial automation and Industry 4.0 applications
    • Healthcare solutions including remote surgery and patient monitoring
    • Extended reality (AR/VR/MR) market opportunities
    • Holographic communications technical requirements and market sizing
    • Persistent AR overlays and ambient intelligence infrastructure
    • Real-time digital twins for manufacturing and infrastructure
  • Materials & Components:
    • Advanced substrate materials (LTCC, LCP, glass) for low-loss propagation
    • Thermal management solutions (phase change materials, graphene, diamond)
    • Metamaterials for RIS and electromagnetic manipulation
    • Transparent conductive materials for building-integrated deployments
    • Energy harvesting technologies for zero-power IoT devices
    • Packaging technologies (antenna-in-package, 3D integration)
    • Optical components for fiber-wireless convergence
  • Companies Profiled include: AALTO HAPS, AGC Japan, Alcan Systems, Alibaba China, Alphacore, Ampleon, Apple, Atheraxon, Commscope, Echodyne, Ericsson, Fractal Antenna Systems, Freshwave, Fujitsu, Greenerwave, Huawei, Kymeta, Kyocera, LATYS Intelligence, LG Electronics, META, NEC Corporation, Nokia, NTT DoCoMo, NXP Semiconductors, NVIDIA, Omniflow, Orange France, Panasonic, Picocom, Pivotal Commware, Plasmonics, Qualcomm, Radi-Cool, Renesas Electronics Corporation, Samsung, Sekisui, SensorMetrix, SK telecom, Solvay, Sony, Teraview, TMYTEK, Vivo Mobile Communications, and ZTE.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. From 1G to 6G
  • 1.2. The AI-Native 6G Revolution
  • 1.3. Evolution from 5G Networks
    • 1.3.1. Limitations with 5G
    • 1.3.2. Benefits of 6G
    • 1.3.3. Advanced materials in 6G
    • 1.3.4. Recent hardware developments
  • 1.4. The 6G Market in 2025
    • 1.4.1. Regional Market Activity
    • 1.4.2. Investment Landscape
    • 1.4.3. Market Constraints in 2025
  • 1.5. Market outlook for 6G
    • 1.5.1. Growth of Mobile Traffic
      • 1.5.1.1. Optimistic Scenario
      • 1.5.1.2. Conservative Scenario
      • 1.5.1.3. Regional Divergence
      • 1.5.1.4. Implications for 6G
    • 1.5.2. Proliferation in Consumer Technology
      • 1.5.2.1. Smartphone Evolution
      • 1.5.2.2. Beyond Smartphones
    • 1.5.3. Industrial and Enterprise Transformation
    • 1.5.4. Economic Competitiveness
    • 1.5.5. Sustainability
      • 1.5.5.1. Energy Efficiency Imperative
  • 1.6. Market drivers and trends
  • 1.7. Market challenges and bottlenecks
    • 1.7.1. Critical Bottlenecks
  • 1.8. Key Conclusions for 6G Communications Systems and Hardware
  • 1.9. Roadmap
    • 1.9.1. Critical Path Analysis
  • 1.10. Global Market Revenues to 2046
    • 1.10.1. 6G Infrastructure Market by Deployment Location
    • 1.10.2. 6G Infrastructure Market by Region
    • 1.10.3. 6G Base Station Market
    • 1.10.4. Reconfigurable Intelligent Surfaces (RIS) Market
    • 1.10.5. 6G Thermal Management Market
    • 1.10.6. 6G Application Markets
    • 1.10.7. 6G Device Market Forecast by Category
    • 1.10.8. 6G Components & Materials Market
    • 1.10.9. 6G Services Market
  • 1.11. Applications
    • 1.11.1. Connected Autonomous Vehicle Systems
    • 1.11.2. Next Generation Industrial Automation
    • 1.11.3. Healthcare Solutions
    • 1.11.4. Immersive Extended Reality Experiences
  • 1.12. Geographical Markets for 6G
    • 1.12.1. North America
    • 1.12.2. Asia Pacific
      • 1.12.2.1. China
      • 1.12.2.2. Japan
      • 1.12.2.3. South Korea
      • 1.12.2.4. India
    • 1.12.3. Europe
  • 1.13. Main Market Players
  • 1.14. 6G Projects by Country
  • 1.15. Sustainability in 6G

2. INTRODUCTION

  • 2.1. What is 6G?
  • 2.2. Evolving Mobile Communications
  • 2.3. 5G deployment
    • 2.3.1. Motivation for 6G
    • 2.3.2. Growth in Mobile Data Traffic
      • 2.3.2.1. Growth of Mobile Traffic Slows
    • 2.3.3. Future of Traffic
      • 2.3.3.1. Continued Exponential Growth (Optimist View)
      • 2.3.3.2. Structural Deceleration (Realist View)
      • 2.3.3.3. Plateau and Decline (Pessimist View)
    • 2.3.4. Traffic Growth Plateau in China
    • 2.3.5. Video Streaming
  • 2.4. Multi-Dimensional Value Proposition
  • 2.5. Potential 6G High-Value Applications
    • 2.5.1. Holographic Communication
    • 2.5.2. Persistent AR Overlays
    • 2.5.3. Cooperative Perception for Autonomous Systems
    • 2.5.4. Real-Time Digital Twins
  • 2.6. Applications and Required Bandwidths
  • 2.7. Artificial Intelligence's impact on network traffic
    • 2.7.1. AI Workload: On-Device vs Cloud
  • 2.8. Autonomous vehicles
    • 2.8.1. Autonomous Vehicle Communications
    • 2.8.2. Cooperative Perception
    • 2.8.3. Vehicle platooning
  • 2.9. 6G Rollout Timeline
    • 2.9.1. Regional Deployment Timeline
  • 2.10. 6G Spectrum
    • 2.10.1. 6G Candidate Spectrum Bands
    • 2.10.2. Bands vs Bandwidth
    • 2.10.3. Bandwidth-Coverage Tradeoff
    • 2.10.4. 6G Spectrum and Deployment
      • 2.10.4.1. Economic Deployment Model
        • 2.10.4.1.1. Phase 1: Evolutionary 6G (2029-2034)
        • 2.10.4.1.2. Phase 2: Revolutionary 6G (2034-2040+)
  • 2.11. Frequencies Beyond 100GHz
    • 2.11.1. Atmospheric Absorption Windows
    • 2.11.2. Sub-THz Application Viability
    • 2.11.3. 6G Applications
  • 2.12. Technology Interdependencies
  • 2.13. Global Trends

3. 6G RADIO SYSTEMS

  • 3.1. Technical Targets for High Data-Rate 6G Radios
  • 3.2. 6G Transceiver Architecture
  • 3.3. Technical Elements in 6G Radio Systems
  • 3.4. Bandwidth and Modulation
  • 3.5. Bandwidth Requirements for Supporting 100 Gbps - 1 Tbps Radios
    • 3.5.1. Practical Bandwidth Allocation
  • 3.6. Bandwidth and MIMO
  • 3.7. 6G Radio Performance
  • 3.8. Beyond 100 Gbps
  • 3.9. Radio Link Range vs System Gain
  • 3.10. Hardware Gap
  • 3.11. Saturated Output Power vs Frequency
  • 3.12. Power consumption
    • 3.12.1. Power Consumption of PA Scale with Frequency
    • 3.12.2. Power Consumption on the Transceiver Side (1, 2, 3)
      • 3.12.2.1. Receive Chain Power Analysis

4. BASE STATIONS AND NON-TERRESTRIAL NETWORKS

  • 4.1. UM-MIMO and Vanishing Base Stations
    • 4.1.1. Sequence
    • 4.1.2. RIS-Enabled, Self-Powered 6G UM-MIMO Base Station Design
      • 4.1.2.1. System Architecture
      • 4.1.2.2. Power Management
      • 4.1.2.3. Performance Characteristics
    • 4.1.3. Base Station Power and Cooling
      • 4.1.3.1. Power Consumption Drivers
      • 4.1.3.2. Economic and Environmental Impact
      • 4.1.3.3. Solutions and Mitigation Strategies
    • 4.1.4. Semiconductor Technologies for 6G Base Stations
      • 4.1.4.1. Power Amplifiers
      • 4.1.4.2. Transceivers and Beamformers
      • 4.1.4.3. Baseband Processing
      • 4.1.4.4. RIS Control
    • 4.1.5. Base Station and MIMO Technology Advances
      • 4.1.5.1. Integrated Active Antenna Systems
      • 4.1.5.2. Open RAN Architecture
      • 4.1.5.3. AI and Machine Learning Integration
      • 4.1.5.4. Network Slicing
      • 4.1.5.5. Edge Computing Integration
  • 4.2. Satellites and Drones
    • 4.2.1. How Satellites Benefit from 6G
    • 4.2.2. How 6G Benefits from Satellites
    • 4.2.3. Drone Integration Benefits
  • 4.3. Internet of Drones
    • 4.3.1. Network Architecture
    • 4.3.2. Technical Challenges
    • 4.3.3. Market Outlook
  • 4.4. High Altitude Platform Stations (HAPS)
    • 4.4.1. HAPS Platforms
    • 4.4.2. Communications Payload
    • 4.4.3. Advantages
    • 4.4.4. Challenges
    • 4.4.5. Status and Timeline
  • 4.5. 6G Non-Terrestrial Networks (NTN)
    • 4.5.1. Connectivity Gap
      • 4.5.1.1. Dimensions of the Gap
      • 4.5.1.2. Quantification
      • 4.5.1.3. Regional Characteristics
    • 4.5.2. Development of LEO NTNs
      • 4.5.2.1. Major Constellations
      • 4.5.2.2. Technology Evolution
    • 4.5.3. NTN Technologies
      • 4.5.3.1. Geostationary Orbit (GEO) Satellites
      • 4.5.3.2. Medium Earth Orbit (MEO) Satellites
      • 4.5.3.3. Low Earth Orbit (LEO) Satellites
      • 4.5.3.4. Very Low Earth Orbit (VLEO)
    • 4.5.4. HAPS vs LEO vs GEO
      • 4.5.4.1. Deployment Speed and Flexibility
      • 4.5.4.2. Operational Complexity
      • 4.5.4.3. Coverage Characteristics
      • 4.5.4.4. Economic Models
    • 4.5.5. Direct to Cell (D2C)
      • 4.5.5.1. Technical Challenge
      • 4.5.5.2. Satellite Solutions
      • 4.5.5.3. Performance Expectations
      • 4.5.5.4. Market Positioning
    • 4.5.6. NTNs for D2C
      • 4.5.6.1. Link Budget Components
      • 4.5.6.2. HAPS Analysis
      • 4.5.6.3. LEO Analysis
      • 4.5.6.4. MEO and GEO Analysis
    • 4.5.7. Technologies for Non-Terrestrial Networks
      • 4.5.7.1. Satellite Bus and Platform Technologies
      • 4.5.7.2. Phased Array Antennas
      • 4.5.7.3. Satellite Payload Processing
      • 4.5.7.4. Inter-Satellite Optical Links
      • 4.5.7.5. Ground Segment Infrastructure

5. SEMICONDUCTORS FOR 6G

  • 5.1. Introduction
  • 5.2. RF Transistors Performance
  • 5.3. Si-based Semiconductors
    • 5.3.1. CMOS
      • 5.3.1.1. Bulk vs SOI
      • 5.3.1.2. SiGe
  • 5.4. GaAs and GaN
    • 5.4.1. GaN's Opportunity in 6G
    • 5.4.2. GaN-on-Si, SiC or Diamond for RF
    • 5.4.3. GaAs Positioning in 6G
    • 5.4.4. State-of-the-Art GaAs Based Amplifier
    • 5.4.5. GaAs vs GaN for RF Power Amplifiers
    • 5.4.6. Power Amplifier Technology Benchmarking
  • 5.5. InP (Indium Phosphide)
    • 5.5.1. InP HEMT vs InP HBT
      • 5.5.1.1. InP Opportunities for 6G
    • 5.5.2. Heterogeneous Integration of InP with SiGe BiCMOS
  • 5.6. Semiconductor Challenges for THz Communications
    • 5.6.1. Mitigation Strategies
  • 5.7. Semiconductor Supply Chain

6. PHASE ARRAY ANTENNAS FOR 6G

  • 6.1. Key 6G Antenna Requirements
  • 6.2. Challenges in mmWave Phased Array Systems
    • 6.2.1. Primary Challenges
  • 6.3. Antenna Architectures
  • 6.4. Challenges in 6G Antennas
  • 6.5. Power and Antenna Array Size
  • 6.6. 5G Phased Array Antenna
  • 6.7. Antenna Manufacturers
  • 6.8. Technology Benchmarking
  • 6.9. GHz Phased Array
  • 6.10. Antenna Types
  • 6.11. Phased Array Modules
    • 6.11.1. Technology Readiness Assessment

7. ADVANCED PACKAGING FOR 6G

  • 7.1. Evolution Drivers
  • 7.2. Packaging Requirements
    • 7.2.1. Electrical Performance Demands
    • 7.2.2. Thermal Management Imperatives
  • 7.3. Antenna Packaging Technology Options
    • 7.3.1. Technology Selection Criteria
  • 7.4. mmWave Antenna Integration
    • 7.4.1. Antenna-on-Board (AoB)
    • 7.4.2. Antenna-in-Package (AiP)
    • 7.4.3. Antenna-on-Chip (AoC)
    • 7.4.4. Performance Analysis
  • 7.5. Next Generation Phased Array Targets
    • 7.5.1. System-Level Requirements Translation
    • 7.5.2. Technology Roadmap Implications
  • 7.6. Antenna Packaging vs Operational Frequency
    • 7.6.1. Frequency-Dependent Loss Mechanisms
  • 7.7. Integration Technologies
    • 7.7.1. Performance vs Cost
    • 7.7.2. Flexibility vs Optimization
  • 7.8. Approaches to Integrate InP on CMOS
    • 7.8.1. Integration Challenge
    • 7.8.2. Die-to-Die Hybrid Assembly
    • 7.8.3. Wafer-Level Bonding
    • 7.8.4. Epitaxial Transfer
  • 7.9. Antenna Integration Challenges
    • 7.9.1. Dimensional Tolerance Requirements
    • 7.9.2. Thermal Management Scaling
    • 7.9.3. Manufacturing Yield Economics
  • 7.10. Substrate Materials for AiP
  • 7.11. Antenna on Chip (AoC) for 6G
  • 7.12. Evolution of Hardware Components from 5G to 6G

8. MATERIALS AND TECHNOLOGIES FOR 6G

  • 8.1. Material Challenge Domains
    • 8.1.1. Material Property Interdependencies
  • 8.2. 6G ZED Compounds and Carbon Allotropes
  • 8.3. Thermal Cooling and Conductor Materials
  • 8.4. Thermal Metamaterials for 6G
  • 8.5. Ionogels for 6G
  • 8.6. Advanced Heat Shielding and Thermal Insulation
  • 8.7. Low-Loss Dielectrics
  • 8.8. Optical and Sub-THz 6G Materials
  • 8.9. Materials for Metamaterial-Based 6G RIS
  • 8.10. Electrically-Functionalized Transparent Glass for 6G OTA, T-RIS
    • 8.10.1. Transparent Conductive Oxides (TCO)
    • 8.10.2. Metal Meshes
    • 8.10.3. Printed Silver Nanowires
    • 8.10.4. Graphene
  • 8.11. Low-Loss Materials for mmWave and THz
  • 8.12. Inorganic Compounds
    • 8.12.1. Overview
    • 8.12.2. Materials
  • 8.13. Elements
    • 8.13.1. Overview
    • 8.13.2. Materials
  • 8.14. Organic Compounds
    • 8.14.1. Overview
    • 8.14.2. Materials
  • 8.15. 6G Dielectrics
    • 8.15.1. Overview
    • 8.15.2. Companies
    • 8.15.3. SWOT Analysis
  • 8.16. Metamaterials
    • 8.16.1. Overview
    • 8.16.2. Metamaterials for RIS in Telecommunication
      • 8.16.2.1. RIS Operating Principles
    • 8.16.3. RIS Performance and Economics
      • 8.16.3.1. Passive Beamforming
      • 8.16.3.2. Hybrid Beamforming with RIS
      • 8.16.3.3. Adaptive Beamforming Techniques
    • 8.16.4. Applications
      • 8.16.4.1. Reconfigurable Antennas
      • 8.16.4.2. Wireless Sensing
      • 8.16.4.3. Wi-Fi/Bluetooth
      • 8.16.4.4. 5G and 6G Metasurfaces for Wireless Communications
        • 8.16.4.4.1. 5G Applications
        • 8.16.4.4.2. 6G Evolution
      • 8.16.4.5. Hypersurfaces
      • 8.16.4.6. Active Material Patterning
      • 8.16.4.7. Optical ENZ Metamaterials
      • 8.16.4.8. Liquid Crystal Polymers
        • 8.16.4.8.1. LCP Applications in 6G
  • 8.17. Thermal Management
    • 8.17.1. Overview
    • 8.17.2. Thermal Materials and Structures for 6G
      • 8.17.2.1. Advanced Ceramics
      • 8.17.2.2. Diamond-based Materials
      • 8.17.2.3. Graphene and Carbon Nanotubes
      • 8.17.2.4. Phase Change Materials (PCMs)
      • 8.17.2.5. Advanced Polymers
      • 8.17.2.6. Metal Matrix Composites
      • 8.17.2.7. Two-Dimensional Materials
      • 8.17.2.8. Nanofluid Coolants
      • 8.17.2.9. Thermal Metamaterials
      • 8.17.2.10. Hydrogels
      • 8.17.2.11. Aerogels
      • 8.17.2.12. Pyrolytic Graphite
      • 8.17.2.13. Thermoelectrics
        • 8.17.2.13.1. Cooling Applications
        • 8.17.2.13.2. Energy Harvesting
  • 8.18. Graphene and 2D Materials
    • 8.18.1. Overview
    • 8.18.2. Applications
      • 8.18.2.1. Supercapacitors, LiC and Pseudocapacitors
      • 8.18.2.2. Graphene Transistors
      • 8.18.2.3. Graphene THz Device Structures
  • 8.19. Fiber Optics
    • 8.19.1. Overview
    • 8.19.2. Materials and Applications in 6G
      • 8.19.2.1. Key Optical Materials
      • 8.19.2.2. 6G Fiber-Wireless Architecture
  • 8.20. Smart EM Devices
    • 8.20.1. Overview
    • 8.20.2. Technical Challenges
    • 8.20.3. Current Status
  • 8.21. Photoactive Materials
    • 8.21.1. Overview
    • 8.21.2. Applications in 6G
      • 8.21.2.1. Optically-Controlled RIS
  • 8.22. Silicon Carbide
    • 8.22.1. Overview
    • 8.22.2. Applications in 6G
      • 8.22.2.1. GaN-on-SiC Power Amplifiers
      • 8.22.2.2. Thermal Management
      • 8.22.2.3. RF Substrates
  • 8.23. Phase-Change Materials
    • 8.23.1. Overview
    • 8.23.2. Applications in 6G
      • 8.23.2.1. Reconfigurable Metamaterials
      • 8.23.2.2. Reconfigurable Antennas
      • 8.23.2.3. RF Switches
        • 8.23.2.3.1. Commercialization Challenges
  • 8.24. Vanadium Dioxide
    • 8.24.1. Overview
    • 8.24.2. Applications in 6G
      • 8.24.2.1. Ultrafast RF Switches
      • 8.24.2.2. Thermally-Triggered Devices
      • 8.24.2.3. Tunable Metamaterials
  • 8.25. Micro-mechanics, MEMS and Microfluidics
    • 8.25.1. Overview
    • 8.25.2. Applications in 6G
      • 8.25.2.1. MEMS RF Switches
      • 8.25.2.2. MEMS Tunable Capacitors
      • 8.25.2.3. MEMS Phase Shifters
      • 8.25.2.4. Microfluidic Cooling
      • 8.25.2.5. Commercial Status
  • 8.26. Solid State Cooling
    • 8.26.1. Overview
    • 8.26.2. Thermoelectric Cooling
    • 8.26.3. Electrocaloric and Magnetocaloric Cooling

9. MIMO FOR 6G

  • 9.1. MIMO in Wireless Communications
    • 9.1.1. MIMO Evolution Timeline
  • 9.2. Challenges with mMIMO
    • 9.2.1. Channel State Information Acquisition
    • 9.2.2. Computational Complexity
    • 9.2.3. Hardware Impairments
    • 9.2.4. Cost and Power Consumption
  • 9.3. Distributed MIMO
    • 9.3.1. Architecture
    • 9.3.2. Benefits
    • 9.3.3. Challenges
  • 9.4. Cell-free Massive MIMO (Large-Scale Distributed MIMO)
    • 9.4.1. Concept
    • 9.4.2. Network Topology
    • 9.4.3. Performance Benefits
  • 9.5. 6G Massive MIMO
    • 9.5.1. Frequency-Specific Factors
    • 9.5.2. Processing Architecture
    • 9.5.3. AI/ML Integration
    • 9.5.4. Deployment Strategies
  • 9.6. Cell-Free MIMO
    • 9.6.1. Cellular System Limitations
    • 9.6.2. Cell-Free Solutions
    • 9.6.3. Economic Considerations
    • 9.6.4. Interpretation
  • 9.7. Benefits and Challenges of Cell-Free MIMO
    • 9.7.1. Benefits
    • 9.7.2. Challenges
  • 9.8. Cell-Free Massive MIMO
    • 9.8.1. Overview
    • 9.8.2. Network MIMO (CoMP - Coordinated Multi-Point)
    • 9.8.3. Cell-Free mMIMO Distinctive Features
    • 9.8.4. Transition Strategy
    • 9.8.5. Commercial Readiness
    • 9.8.6. Market Projections

10. ZERO ENERGY DEVICES (ZED) AND BATTERY ELIMINATION

  • 10.1. Overview
    • 10.1.1. Critical Success Factors
    • 10.1.2. Market Impact
  • 10.2. ZED-Related Technology
    • 10.2.1. Technology Convergence
    • 10.2.2. Drivers for ZED and Battery-Free
      • 10.2.2.1. Operational Impossibility
      • 10.2.2.2. Economic Imperative
      • 10.2.2.3. Environmental Sustainability
      • 10.2.2.4. Reliability and Autonomy
      • 10.2.2.5. Lessons from Deployments
  • 10.3. Zero-Energy and Battery-Free 6G
    • 10.3.1. Infrastructure
    • 10.3.2. Client Devices
  • 10.4. Electricity consumption of wireless networks
    • 10.4.1. Network Energy Consumption Trends
    • 10.4.2. Energy Harvesting
  • 10.5. Technologies
    • 10.5.1. On-Board Harvesting Technologies Compared and Prioritized
    • 10.5.2. 6G ZED Design Approaches
    • 10.5.3. Device Architecture
      • 10.5.3.1. System Integration
      • 10.5.3.2. Architecture Variants
    • 10.5.4. Energy Harvesting
      • 10.5.4.1. Power Management Optimization
      • 10.5.4.2. Transducer Efficiency
      • 10.5.4.3. Impedance Matching
    • 10.5.5. Device Battery-Free Storage
      • 10.5.5.1. Supercapacitors
      • 10.5.5.2. Lithium-Ion Capacitors (LIC)
      • 10.5.5.3. Selection Guidelines
      • 10.5.5.4. "Massless Energy" for ZED
        • 10.5.5.4.1. Performance
        • 10.5.5.4.2. 6G ZED Applications
        • 10.5.5.4.3. Challenges
        • 10.5.5.4.4. Status
    • 10.5.6. Ambient Backscatter Communications AmBC, Crowd Detectable CD-ZED, SWIPT
      • 10.5.6.1. Performance Characteristics
      • 10.5.6.2. 6G Integration
      • 10.5.6.3. Crowd Detectable CD-ZED
      • 10.5.6.4. Simultaneous Wireless Information and Power Transfer (SWIPT)
      • 10.5.6.5. Performance
  • 10.6. 6G ZED Materials and Technologies
    • 10.6.1. Metamaterials
    • 10.6.2. IRS (Intelligent Reflecting Surfaces)
    • 10.6.3. RIS (Reconfigurable Intelligent Surfaces)
    • 10.6.4. Simultaneous Wireless Information and Power Transfer (SWIPT)
    • 10.6.5. Ambient Backscatter Communications (AmBC)
      • 10.6.5.1. Advanced AmBC Techniques
      • 10.6.5.2. 6G Native Integration
    • 10.6.6. Energy Harvesting for 6G
      • 10.6.6.1. Photovoltaics
        • 10.6.6.1.1. Technology Options
        • 10.6.6.1.2. Indoor Optimization
      • 10.6.6.2. Ambient RF
        • 10.6.6.2.1. Power Availability
        • 10.6.6.2.2. Rectifier Technology
        • 10.6.6.2.3. Multi-Band Harvesting
      • 10.6.6.3. Electrodynamic
        • 10.6.6.3.1. Characteristics
        • 10.6.6.3.2. Applications
      • 10.6.6.4. Piezoelectric materials
        • 10.6.6.4.1. Materials
        • 10.6.6.4.2. Harvester Designs
      • 10.6.6.5. Triboelectric nanogenerators (TENGs
        • 10.6.6.5.1. Operating Principle
        • 10.6.6.5.2. Performance
        • 10.6.6.5.3. 6G Applications
        • 10.6.6.5.4. Challenges
      • 10.6.6.6. Thermoelectric generators (TEGs)
        • 10.6.6.6.1. Performance
        • 10.6.6.6.2. Temperature Sources
        • 10.6.6.6.3. 6G ZED Applications
      • 10.6.6.7. Pyroelectric materials
        • 10.6.6.7.1. Mechanism
        • 10.6.6.7.2. Performance
        • 10.6.6.7.3. Applications
        • 10.6.6.7.4. Limitations
      • 10.6.6.8. Thermal Hydrovoltaic
        • 10.6.6.8.1. Mechanisms
        • 10.6.6.8.2. Performance
        • 10.6.6.8.3. Status
      • 10.6.6.9. Biofuel Cells
        • 10.6.6.9.1. Types
        • 10.6.6.9.2. Performance
        • 10.6.6.9.3. Applications
        • 10.6.6.9.4. Challenges
        • 10.6.6.9.5. Status
    • 10.6.7. Ultra-Low-Power Electronics
      • 10.6.7.1. Technologies
      • 10.6.7.2. Future Targets (2030)
      • 10.6.7.3. Design Techniques
      • 10.6.7.4. Supercapacitors
        • 10.6.7.4.1. Advanced Supercapacitor Technologies
      • 10.6.7.5. Hybrid Approaches
        • 10.6.7.5.1. Lithium-Ion Capacitors (LIC)
        • 10.6.7.5.2. Sodium-Ion Batteries
        • 10.6.7.5.3. Lithium Titanate (LTO) Batteries
      • 10.6.7.6. Pseudocapacitors
        • 10.6.7.6.1. Operating Principle
        • 10.6.7.6.2. Performance
        • 10.6.7.6.3. 6G ZED Applications
        • 10.6.7.6.4. Status
        • 10.6.7.6.5. Research Directions

11. 6G DEVELOPMENT ROADMAPS

  • 11.1. Spectrum for 6G
  • 11.2. US Federal Spectrum
  • 11.3. Regulatory Status (2025)
  • 11.4. Standalone vs Non-Standalone Rollout
  • 11.5. Open RAN for 6G
    • 11.5.1. Regional Open RAN Positioning
  • 11.6. Competition for Spectrum in Europe
    • 11.6.1. Key Challenges
  • 11.7. Global 6G Government Initiatives
    • 11.7.1. Program Effectiveness Factors
  • 11.8. 6G Development Roadmap - South Korea
    • 11.8.1. Technology Focus Areas
    • 11.8.2. South Korea - mmWave Challenges
  • 11.9. 6G Development Roadmap - Japan
    • 11.9.1. Beyond 5G Program Structure
    • 11.9.2. Deployment Timeline and Market Strategy
  • 11.10. Funding Models to Research the Next Mobile Communication Infrastructure
  • 11.11. 6G Development Roadmap - US

12. COMPANY PROFILES

  • 12.1. AALTO HAPS
  • 12.2. AGC Japan
  • 12.3. Alcan Systems
  • 12.4. Alibaba China
  • 12.5. Alphacore
  • 12.6. Ampleon
  • 12.7. Apple
  • 12.8. Atheraxon
  • 12.9. Commscope
  • 12.10. Echodyne
  • 12.11. Ericsson
  • 12.12. Fractal Antenna Systems
  • 12.13. Freshwave
  • 12.14. Fujitsu
  • 12.15. Greenerwave
  • 12.16. Huawei
  • 12.17. Kymeta
  • 12.18. Kyocera
  • 12.19. LATYS Intelligence
  • 12.20. LG Electronics
  • 12.21. META
  • 12.22. NEC Corporation
  • 12.23. Nokia
  • 12.24. NTT DoCoMo
  • 12.25. NXP Semiconductors
  • 12.26. NVIDIA
  • 12.27. Omniflow
  • 12.28. Orange France
  • 12.29. Panasonic
  • 12.30. Picocom
  • 12.31. Pivotal Commware
  • 12.32. Plasmonics
  • 12.33. Qualcomm
  • 12.34. Radi-Cool
  • 12.35. Renesas Electronics Corporation
  • 12.36. Samsung
  • 12.37. Sekisui
  • 12.38. SensorMetrix
  • 12.39. SK telecom
  • 12.40. Solvay
  • 12.41. Sony
  • 12.42. Teraview
  • 12.43. TMYTEK
  • 12.44. Vivo Mobile Communications
  • 12.45. ZTE

13. RESEARCH METHODOLOGY

14. REFERENCES

List of Tables

  • Table 1. Evolution of Mobile Wireless Communications from 1G to 6G
  • Table 2. Key Limitations with 5G Networks
  • Table 3. Key Differentiators and Benefits of 6G vs 5G
  • Table 4. Advanced Materials Enabling 6G Communications
  • Table 5. Notable 6G Hardware Demonstrations (2024-2025)
  • Table 6. 6G Market Readiness Indicators (2025)
  • Table 7. Global 6G R&D Investment by Source (2023-2025)
  • Table 8. Global Mobile Data Traffic Growth (2018-2025)
  • Table 9. Mobile Data Traffic Forecasts - Competing Scenarios (2026-2036)
  • Table 10. Smartphone Capability Evolution Through 6G Era
  • Table 11. Enterprise 6G Market Forecast by Vertical (2030-2036),
  • Table 12. Government 6G Strategy Approaches by Country
  • Table 13. Network Energy Consumption Evolution and 6G Targets
  • Table 14. Sustainability Metrics
  • Table 15. Primary Market Drivers for 6G Adoption (2026-2036)
  • Table 16. Critical Challenges and Bottlenecks for 6G Market Development
  • Table 17. Sub-THz Power Amplifier Technology Gap Analysis
  • Table 18. 6G Hardware Technology Readiness Roadmap
  • Table 19. Global 6G Market Forecast Summary (2026-2046)
  • Table 20. 6G Infrastructure Market by Deployment Location (2030, 2033, 2036)
  • Table 21. 6G Infrastructure Market by Region (2030, 2033, 2036)
  • Table 22. 6G Base Station Market (2029-2046)
  • Table 23. Reconfigurable Intelligent Surfaces (RIS) Market Forecast (2027-2046)
  • Table 24. 6G Thermal Management Market Forecast (2029-2046)
  • Table 25. 6G Application-Specific Markets (2030-2046)
  • Table 26. 6G Device Market Forecast by Category (2028-2046), Units
  • Table 27. 6G Components & Materials Market by Technology (2029-2046)
  • Table 28. 6G Services Market (2029-2046)
  • Table 29. Autonomous Vehicle Connectivity Requirements
  • Table 30. 6G-Connected Autonomous Vehicle Market Forecast
  • Table 31. 6G Industrial Automation Market by Segment (2036)
  • Table 32. 6G Healthcare Market Forecast (2030-2036)
  • Table 33. XR Experience Tiers and 6G Requirements
  • Table 34. 6G-Enabled XR Market (2030-2036)
  • Table 35. North America 6G Market Forecast (2026-2036)
  • Table 36. US Operator 6G Investment Profile
  • Table 37. Asia Pacific 6G Market Forecast by Sub-Region (2036)
  • Table 38. Europe 6G Market Forecast by Major Markets (2036)
  • Table 39. Leading 6G Equipment Vendors
  • Table 40. Semiconductor Companies for 6G
  • Table 41. Key Materials and Component Suppliers
  • Table 42. Major Government-Funded 6G Programs Worldwide
  • Table 43. 6G Sustainability Targets vs. 5G Baseline
  • Table 44. Defining Characteristics of 6G
  • Table 45. Common Misconceptions
  • Table 46. Evolution of Mobile Communications Focus
  • Table 47. Global 5G Deployment Status (2025)
  • Table 48. 5G Performance - Promised vs. Delivered (2025)
  • Table 49. Application Requirements Exceeding 5G Capabilities
  • Table 50. Global Mobile Data Traffic Evolution (2015-2025)
  • Table 51. Per Capita Data Usage - Developed Markets (2020-2025)
  • Table 52. China Mobile Data Traffic Evolution (2018-2025)
  • Table 53. Video Streaming Traffic Share Evolution
  • Table 54. Video Streaming Bandwidth Requirements
  • Table 55. Applications Requiring >1 Gbps Sustained Bandwidth
  • Table 56. Comprehensive Application Bandwidth Requirements
  • Table 57. Net AI Impact on Mobile Data Traffic (2025-2036)
  • Table 58. AI Workload Distribution Evolution
  • Table 59. Autonomous Vehicle Communication Requirements by Level
  • Table 60. Autonomous Vehicle 6G Connectivity Market Forecast
  • Table 61. Platooning Benefits and Requirements
  • Table 62. Platooning Connectivity Market
  • Table 63. Key 5G Lessons and 6G Responses
  • Table 64. Comprehensive 6G Development and Deployment Timeline
  • Table 65. 6G Commercial Launch Timeline by Region
  • Table 66. 6G Candidate Spectrum Bands
  • Table 67. Regional Spectrum Priorities for 6G
  • Table 68. Bandwidth Availability by Frequency Range
  • Table 69. Achievable Data Rates by Spectrum Allocation
  • Table 70. Path Loss Comparison Across Frequencies
  • Table 71. Deployment Strategy by Frequency Band
  • Table 72. Detailed 5G vs 6G Performance Comparison
  • Table 73. Characteristics of >100 GHz Frequency Bands
  • Table 74. Atmospheric Windows for Sub-THz Communications
  • Table 75. Application Suitability for >100 GHz
  • Table 76. 6G Application Portfolio
  • Table 77. Core 6G Enabling Technologies
  • Table 78. 6G Radio System Technical Targets
  • Table 79. 6G Transceiver Component Requirements
  • Table 80. Bandwidth Requirements for Target Data Rates
  • Table 81. Spectrum Allocation Scenarios for Extreme Data Rates
  • Table 82. MIMO Configuration Trade-offs
  • Table 83. Critical 6G Radio Performance Parameters
  • Table 84. Notable 100+ Gbps Wireless Demonstrations (2023-2025)
  • Table 85. Range vs Frequency Analysis for 6G
  • Table 86. Power Amplifier Output Power vs Frequency
  • Table 87. Semiconductor Technology Comparison for Sub-THz Power Amplifiers
  • Table 88. Power Budget for 140 GHz Base Station Radio Unit
  • Table 89. Power Scaling with Array Size
  • Table 90. PA Efficiency vs Frequency Trend
  • Table 91. Transmission Distance vs Frequency for Fixed Power Budget
  • Table 92. Receiver Power Breakdown by Function
  • Table 93. Power Comparison - 5G mmWave vs 6G Sub-THz
  • Table 94. Terrestrial vs Non-Terrestrial 6G Infrastructure Comparison
  • Table 95. Base Station Power Consumption Evolution and Cooling Requirements
  • Table 96. Critical Semiconductor Technologies for 6G Base Stations
  • Table 97. Drone Network Applications and Requirements
  • Table 98. HAPS Characteristics and Comparison with Alternatives
  • Table 99. Connectivity Gap Analysis by Region (2025)
  • Table 100. Major LEO Constellation Status and Plans (2025)
  • Table 101. Comprehensive NTN Technology Performance Comparison
  • Table 102. Qualitative Feature Comparison - HAPS vs LEO vs GEO
  • Table 103. Link Budget Summary for Direct-to-Cell Scenarios
  • Table 104. Critical NTN Enabling Technologies and Status
  • Table 105. Semiconductor Selection Criteria Priority Matrix
  • Table 106. RF Transistor Technology Benchmark (2025)
  • Table 107. Bulk CMOS vs SOI Comparison
  • Table 108. Advanced CMOS RF Performance by Process Node
  • Table 109. SiGe Technology Evolution for 6G
  • Table 110. Major SiGe BiCMOS Foundries and Capabilities
  • Table 111. Wide Bandgap Semiconductor Properties
  • Table 112. GaN Substrate Comparison
  • Table 113. Best Reported GaN PA Performance (2024-2025)
  • Table 114. GaN Manufacturing Capacity for 6G (2025)
  • Table 115. GaAs Application Opportunities in 6G
  • Table 116. Advanced GaAs Amplifier Performance (2025)
  • Table 117. Direct Technology Comparison - GaAs vs GaN
  • Table 118. Comprehensive PA Technology Comparison at Key 6G Frequencies
  • Table 119. InP Technology State-of-the-Art (2025)
  • Table 120. InP Device Type Comparison
  • Table 121. InP Market Forecast for 6G (2030-2036)
  • Table 122. InP-SiGe Integration Methods
  • Table 123. Leading InP PA Demonstrations (2024-2025)
  • Table 124. Silicon vs III-V Compound Semiconductor Comparison
  • Table 125. Critical Semiconductor Challenges for 6G Sub-THz
  • Table 126. Semiconductor Technology Recommendation by Application
  • Table 127. 6G Semiconductor Supply Chain - Capacity and Constraints (2025)
  • Table 128. 6G Antenna Requirements vs 5G Comparison
  • Table 129. mmWave/Sub-THz Phased Array Challenges and Solutions
  • Table 130. Antenna Element Size vs Frequency
  • Table 131. 6G Antenna Architecture Comparison
  • Table 132. Critical 6G Antenna Design Challenges
  • Table 133. Theoretical vs Practical Antenna Array Gain
  • Table 134. Power-Array Size Trade-off Analysis for 100m Range at 140 GHz
  • Table 135. Commercial 5G mmWave Phased Array Antenna Specifications (2024-2025)
  • Table 136. Major Antenna and Phased Array Module Suppliers for 6G
  • Table 137. Nokia 90 GHz Array Performance Summary
  • Table 138. Comparative Analysis - 28 GHz vs 90 GHz vs 140 GHz Arrays
  • Table 139. 140 GHz Transceiver Module Component Budget (16-element array)
  • Table 140. Semiconductor Technology Selection for 140 GHz Array Components
  • Table 141. Detailed Antenna Element Types for 6G Phased Arrays
  • Table 142. Commercial Readiness Assessment of D-band Phased Arrays (2025)
  • Table 143. 5G to 6G Antenna Module Evolution
  • Table 144. Packaging Technology Selection Matrix for 6G
  • Table 145. Antenna Integration Approach Comparison
  • Table 146. Technology Benchmark
  • Table 147. Next-Generation Phased Array Packaging Targets
  • Table 148. Packaging Technology Viability by Frequency
  • Table 149. Integration Technology Trade-off Matrix
  • Table 150. InP-CMOS Integration Approaches
  • Table 151. AiP vs Discrete Antenna Techniques
  • Table 152. Substrate Material Performance Comparison at 140 GHz
  • Table 153. Manufacturing Technology Comparison
  • Table 154. AoC vs AiP Performance
  • Table 155. Hardware Evolution Comparison
  • Table 156. 6G Material Requirements vs Current Capabilities
  • Table 157. Low/Zero Expansion Materials for 6G
  • Table 158. Thermal Management Material Ranking for 6G
  • Table 159. Thermal Management Evolution 5G to 6G
  • Table 160. Ionogel vs Alternatives for Tunable RF
  • Table 161. Thermal Insulation Material Comparison
  • Table 162. Low-Loss Dielectric Material Priority Ranking
  • Table 163. Dielectric Constant (Dk) and Loss Factor (Df) Requirements
  • Table 164. Optical and Sub-THz Material Requirements
  • Table 165. RIS Material Comparison
  • Table 166. Transparent Conductor Comparison
  • Table 167. Low-Loss Materials for 6G
  • Table 168. Commercial Availability and Roadmap
  • Table 169. Low-Loss Materials SWOT for 6G
  • Table 170. Key Inorganic Compounds for 6G
  • Table 171. Elemental Materials for 6G Applications
  • Table 172. Organic Materials for 6G Applications
  • Table 173. 6G Dielectrics Market SWOT
  • Table 174. RIS Metamaterial Implementation Approaches
  • Table 175. Metamaterial Manufacturing Approaches
  • Table 176. Adaptive Beamforming Techniques
  • Table 177. Metasurface Performance Evolution 5G to 6G
  • Table 178. Liquid Crystal Materials for 6G
  • Table 179. Metamaterials SWOT for 6G
  • Table 180. Thermal Management for 6G SWOT
  • Table 181. Graphene THz Devices Performance and Status
  • Table 182. Optical Component Requirements for 6G Fronthaul
  • Table 183. Phase-Change Materials for 6G Tuning
  • Table 184. MEMS vs Solid-State RF Components for 6G
  • Table 185. MIMO Technology Evolution Across Wireless Generations
  • Table 186. Massive MIMO Scaling Challenges
  • Table 187. Cell-Free Massive MIMO vs Traditional Cellular
  • Table 188. Cellular vs Cell-Free Architecture Comparison
  • Table 189. Cell-Free MIMO Deployment Challenges and Solutions
  • Table 190. MIMO Architecture Evolution Summary
  • Table 191. Zero Energy Device Vision for 6G IoT
  • Table 192. ZED-Related Technology Landscape
  • Table 193. Real-World Battery-Free Device Examples
  • Table 194. 6G Device Power Requirements and ZED Viability
  • Table 195. ZED Strategy Combination Examples
  • Table 196. 6G Technology Investment Priorities
  • Table 197. Energy Harvesting Technology Comparison
  • Table 198. ZED Technology Readiness Assessment (2025)
  • Table 199. ZED Design Target Examples by Application Class
  • Table 200. ZED System Architecture Components
  • Table 201. Energy Harvesting Enhancement Techniques
  • Table 202. Energy Storage Comparison for ZED
  • Table 203. SWOT Appraisal of Battery-Less Storage Technologies
  • Table 204. Zero-Power Communication Methods Comparison
  • Table 205. Critical ZED Research Areas and Priorities (2025-2030)
  • Table 206. SWIPT Implementation Comparison
  • Table 207. Photovoltaic Technologies for 6G ZED
  • Table 208. Piezoelectric Harvester Comparison
  • Table 209. Thermoelectric Harvesting Scenarios
  • Table 210. Ultra-Low-Power Component Performance (2025)
  • Table 211. Hybrid Storage Device Comparison
  • Table 212. Major 6G Equipment Vendor Positioning (2025)
  • Table 213. World Radiocommunication Conference 6G Timeline
  • Table 214. National/Regional 6G Spectrum Proposals (WRC-27)
  • Table 215. Upper 6 GHz Regulatory Status by Region
  • Table 216.NSA vs SA Deployment Comparison
  • Table 217. Open RAN Evolution - 5G to 6G
  • Table 218.Regional Open RAN Strategies for 6G
  • Table 219. European 6G Spectrum Coordination Status (2025)
  • Table 220. Major Government 6G Programs
  • Table 221.South Korea 6G Development Timeline and Milestones
  • Table 222.Japan Beyond 5G Technology Priorities and Status
  • Table 223.6G Funding Models - International Comparison
  • Table 224.US 6G Development - Key Programs and Participants

List of Figures

  • Figure 1. Evolution of Mobile Networks: From 1G to 6G
  • Figure 2. Comparison between 5G and 6G wireless systems in terms of key-performance indicators
  • Figure 3. Nokia spectrum vision in the 6G era
  • Figure 4. 6G Systems, Materials and Standards Roadmaps 2026-2046
  • Figure 5. Global 6G Market Forecast Summary (2026-2046)
  • Figure 6. 6G Thermal Management Market Forecast (2029-2046)
  • Figure 7. 6G Application-Specific Markets (2030-2046)
  • Figure 8. 6G Device Market Forecast by Category (2028-2046), Units
  • Figure 9. 6G Components & Materials Market by Technology (2029-2046)
  • Figure 10. 6G Services Market (2029-2046)
  • Figure 11. 6G Healthcare Market Forecast (2030-2036)
  • Figure 12. North America 6G Market Forecast (2026-2036)
  • Figure 13. Power efficiency roadmap
  • Figure 14. RIS-assisted wireless communication
  • Figure 15. RIS-enabled, self-sufficient ultra-massive 6G UM-MIMO base station design
  • Figure 16. Lumotive advanced beam steering concept
  • Figure 17. FM/R technology
  • Figure 18. Metablade antenna
  • Figure 19.Millimeter-wave mobile network utilizing a radio-over-fiber system
  • Figure 20. D-Band (110 to 175 Hz) Phased-Array-on-Glass Modules from Nokia
  • Figure 21. Left) Image of beamforming using phased-array wireless device. (Right) Comparison of previously reported transmission with beamforming wireless devices
  • Figure 22. NTT DOCOMO transparent RIS
  • Figure 23. Radi-cool metamaterial film
  • Figure 24. 140 GHz THz prototype from Samsung and UCSB