6G通讯的光和光电的机会:市场·技术 (2026-2046年)
市场调查报告书
商品编码
1842717

6G通讯的光和光电的机会:市场·技术 (2026-2046年)

6G Communications Optical and Optronic Opportunities: Markets, Technologies 2026-2046

出版日期: | 出版商: Zhar Research | 英文 452 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

光学和光电子学是6G通讯成功的关键组成部分,本报告将提供相关指导。本报告针对6G价值链上的所有利害关係人,包括投资者、营运商、光学和光电子材料供应商以及整合商。虽然6G的部署主要透过改进现有5G硬体和频率来实现,但预计物理层之外也将有显着的改进。光学和光电子学对于实现颠覆性的新服务和高盈利能力至关重要。

关键新硬体

6G有望在效能方面实现数量级的提升,从而实现广泛应用,并有可能催生全新的客户端设备和商业模式。这需要引入光无线通讯(OWC)、光讯号处理(OSP)、自供电太阳能光伏技术、利用日光辐射冷却的被动冷却(PDRC)以及改进的光纤和中间介质。大部分基础设施需要具备光学透明性,以便能够作为 "社会融合通讯网路" 广泛应用。

实现卓越效能的关键路径

只有融合这些光学和光电技术,6G 才能真正达到其承诺的性能水准。 6G 超越了简单的 GHz 频段卫星通讯和室内 Wi-Fi;它涵盖了全新的光学技术,包括雷射和雷射二极体、可重构光电智慧表面 (RIS)、光子晶片、多结太阳能电池薄膜、平流层太阳能无人机基地台、光电传输线、光学全像术以及用于智慧窗户的多功能结构光电材料。

一份内容全面、极具实用价值的452页产业报告

这份452页的报告汇集了博士级的专业知识,对2025年之前的产业发展趋势进行了深入分析。报告会持续更新,以确保内容与时俱进,涵盖所有机遇,而不仅仅是OWC。

目录

第1章 摘要整理和结论

  • 本报告的目的和焦点
  • 调查手法
  • 关于 6G 通讯系统和硬体的 17 个结论和 10 个资讯图
  • 11SWOT评估
  • 6G系统·材料·标准化蓝图
  • 6G材料·硬体设备市场预测

第2章 简介

  • 概述:6G 硬体设计理念与经验教训
  • 6G 成功的关键光学与光电技术
  • 创新潜力6G材料发展
  • 学术研究实例及最新市场研究介绍

第3章 6G光无线通讯 (OWC) 基础设施及客户设备

  • OWC及2025年研究趋势
    • OWC范围及2025年研究进展
    • 星间及机载星间光通讯网络
    • 地面光通讯站(空中巴士案例研究)
    • OWC在6G通信中的重要性(2025-2026年研究展望)
  • 6G光通讯:包含2025年研究展望
    • 总结
    • 资讯图表:光/光电通讯硬体在6G的重要性
    • 资讯图表:Tbps级光纤OWC网路远红外线 (THz)、近红外线和可见光
    • 2025 年重点研究
    • 6G 非地面网路应用:6G-NTN 活动
  • 6G 用户端设备:利用更多光学技术
    • 人机介面:智慧型手机及其他设备
    • 2026 年至 2046 年进展预测
    • 智慧型手机可见光通讯 (VLC) 研究 (2025)
  • 下一代光无线通讯 (OWC) 的光子技术:雷射、雷射二极体、光电探测器等(2025-2026 年研究)
    • 雷射
    • 未来 6G 光无线通讯 (OWC) 的 LED、雷射二极体、光接收器及其他装置和材料

第四章:光学面向 6G 的可重构智慧表面 (ORIS) 与光调谐技术(包括 2025 年的进展)

  • 概述
  • 光 RIS (ORIS) 的 SWOT 分析和最新进展
    • 概述
    • ORIS 和分散式 RIS (DRIS) 方案的优势
    • ORIS 的挑战
    • 6G OWC 的 RIS SWOT 评估
    • 可见光通讯的 SWOT 评估
  • ORIS 实施流程
  • 用于远端、地下、水下和太空应用的 RIS 技术
    • 概述
    • 用于车载通讯网路和行动环境的 RIS 增强型 OWC
    • 混合射频-自由空间光 RIS
    • 水下光无线通讯 (UOWC) 系统
    • 地下通讯所需的 RIS
    • 雷射利用RIS技术实现平流层与空间通信
  • 短距离室内光无线通讯及其RIS:2025年研究展望
    • 室内和机载短距离通信
    • 利用RIS技术增强其他室内和短距离室外系统,例如LiFi
  • 用于6G的超透镜技术
  • 镜阵列ORIS的设计与应用

第五章:用于6G基础设施和客户端设备的其他光/光电支援技术(固态辐射冷却、PDRC、透明硬体、智慧窗户)

  • 概述
    • 6G概述
    • 支援6G RIS的冷却窗户范例
    • 背景:热学、介电和超宽频隙(UWBG)材料6G 优先分析-基于最新研究论文数量
  • 适用于 6G 基础设施的固态冷却和温度控制技术
    • 6G 需求涵盖多种光热解决方案
    • 领先候选材料和结构的比较
    • 可实现 5-20°C 温度降低的光学被动固态冷却技术
    • 日间辐射冷却 (PDRC) 的基本原理、10 家公司举措、2025 年研究的领先材料以及 SWOT 分析
    • 2024 年至 2025 年与 6G 相关的光学冷却研究进展(材料和细节)
    • 用于 6G 的先进辐射冷却,包括 Janus 效应和反斯托克斯萤光(含 SWOT 分析和 2025 年研究分析)
    • 自冷却的可行性利用反斯托克斯萤光和雅努斯效应实现雷射和其他 6G 设备

第六章:光讯号处理 (OSP)、光伏、远红外线和太赫兹 (THz),包括多功能 6G 基础设施和客户端设备、波导和光纤电缆、光纤以及光电感测器

  • 概述
  • 用于 6G 的光讯号处理 (OSP)
  • 光学和光电技术在 6G 能量采集的应用
    • 13 种能量采集技术,包括光学和光电技术
    • 适用于 6G 个人设备、主动 RIS 和大规模 MIMO 基地台的能量收集方案
    • 以频率和太阳能功率定位划分的电磁能量撷取工具包
    • 能量采集策略和 SWOT 分析能量采集系统,包括与无质量能量的光子相容性
    • 6G 通讯基础架构和用户端设备中的零能耗元件 (ZED):装置架构的重要性
    • 装置架构
  • 光伏及其衍生技术为何对 6G 至关重要
    • 经验曲线显示成本下降最快的路径 未来发电量将显着成长 利用光电子学和光学技术提高单位体积和单位面积的光伏输出 到 2025 年光伏研究效率最高的趋势 6G 各种形式的演变和高通用性 pn 结光伏与其他方法的比较 重点关注钙钛矿光伏——原因和 2025 年的研究进展 用于 6G 基础设施的热光伏
  • SWOT 分析:6G 波导与电缆设计与材料
    • 应用与选择
    • 太赫兹石墨烯、聚四氟乙烯 (PTFE)、聚溴乙烯 (PBVE)、聚丙烯 (PP)、聚乙烯/聚丙烯 (PE/PP)、铌酸锂 (LiNb)、砷化铟 (InAs)、磷化镓 (GaP):两项 SWOT 分析,以及截至 2025 年的研究进展
    • 未来 6G 光纤中间材料(二氧化硅、蓝宝石、聚溴丙烯/聚乙烯 (PBTP)、聚乙烯 (PE)、聚酰亚胺 (PI)、纤维增强塑胶 (FRP)):SWOT 分析
    • 光子定义的无线电到电缆整合,用于太赫兹 6G 的光子整合
    • 6G 系统设计中光纤的 SWOT 分析
  • 光电感测器:光子感测器、红外线感测器、雷射雷达 (LiDAR)、光电薄膜电晶体、光电感测器、太阳能感测器

第七章:参与 6G 相关资料和硬体的 40 家公司:产品、计画、专利和 Zhar Research评估

  • 摘要:预期 6G 硬体配置、厂商案例和专利趋势(苹果、英特尔、思科等)
  • AGC Japan
  • Airbus Europe
  • Alcan Systems Germany
  • Alibaba China
  • Alphacore USA
  • China Telecom China Mobile, China Unicom, Huawei, ZTE, Lenovo, CICT China collaboration
  • Ericsson Sweden
  • Fractal Antenna Systems USA
  • Greenerwave France
  • Huawei China
  • ITOCHU Japan
  • Kymeta Corp. USA
  • Kyocera Japan
  • Metacept Systems USA
  • Metawave USA
  • NEC Japan
  • Nokia Finland with LG Uplus South Korea
  • NTT DoCoMo and NTTJapan
  • Orange France
  • Panasonic Japan
  • Pivotal Commware USA
  • Qualcomm USA
  • Samsung Electronic South Korea
  • Sekisui Japan
  • SensorMetrix USA
  • SK Telecom South Korea
  • Sony Japan
  • Teraview USA
  • Vivo Mobile Communications China
  • VTT Finland
  • ZTE China
简介目录

Summary

6G Communications Optical and Optronic Opportunities: Markets, Technologies 2026-2046

Your optics and optronics are essential for 6G Communications to succeed. The new report, "6G Communications Optical and Optronic Opportunities: Markets, Technologies 2026-2046" shows the way. It serves those entering the 6G value chain from investors to operators and particularly suppliers and integrators of those vital optical and optronic materials. Yes, 6G will launch mostly with modified 5G hardware and 5G frequency use but strong improvements above the physical layer. However, urgently, that must be followed by adding the optics and optronics that galvanises disruptive services and paybacks.

Essential new hardware

6G promises the widely available performance improved by magnitudes that can lead to radically new client devices and business propositions. For this, it must add Optical Wireless Communications OWC, Optical Signal Processing OSP, photovoltaics for self-powering, Passive Daylight Radiative Cooling PDRC, extra, improved fiber optics intermediary and more. Much infrastructure will need to become optically transparent to, "vanish into the fabric of society" - acceptable in far more places.

Essential route to widespread superlative performance

Only with these and other forms of optics and optronics can 6G approach the promised magnitudes of improvement in parameters during widespread deployment. Think beyond ubiquity from mere GHz satcoms and defaulting to WiFi indoors. 6G must embrace a world of lasers, laser diodes, optronic reconfigurable intelligent surfaces and receivers, photonic chips, multijunction solar film, solar drone "towers in the sky", optronic transmission lines, optical holography and multifunctional structural optronic material including in smart windows.

Uniquely thorough and broad-ranging report

The commercially-oriented 452-page report, "6G Communications Optical and Optronic Opportunities: Markets, Technologies 2026-2046" is uniquely useful. It deeply examines the remarkable advances through 2025 with PhD level insights. It is constantly updated so you only get the latest. It covers all your opportunities not just OWC.

New initiatives, advances, comparisons, possibilities

The 71-page "Executive Summary and Conclusions" is easy reading with graphics presenting 11 of the SWOT appraisals, the materials and component toolkits and prioritisation by new research success and appraised usefulness. Scan the 48 forecast lines and graphs with explanations. See 16 key conclusions. The 35-page Chapter 2. "Introduction" gives the lessons though wireless communications generations and need for two phases of 6G. Here are candidate optical and optronic materials and components and the trend from components-in-a-box to smart materials and metasurfaces. See examples of optical transparency developed for 6G. In all chapters, there are many references to research papers and assessment of them. They are mostly through 2025, with some that will publish in 2026.

Chapter 3. "Optical Wireless Communications involving infrastructure and client devices for 6G" (30 pages) gives the basics. Then see such things as Optical Satellite Networks between satellites and aircraft-to-satellite and optical ground stations with Airbus embracing 6G proposing a formidable toolkit. There are infograms on "Importance of optical/ optronic communication hardware in 6G" and "OWC with fiber optics in a potential Tbps 6G network adding far IR (THz), near IR and visible light". Read application in 6G of Non-Terrestrial Networks NTN including the work of 6G-NTN. See 6G client devices will incorporating more optical and optronic technology. What future OWC lasers, laser diodes, photodetectors and other OWC photonics are revealed in 2025 and planned 2026 research? Infograms and comparisons tables are used throughout, not rambling text.

Chapter 4. "Optical Reconfigurable Intelligent Surfaces ORIS and optical tuning for 6G including advances in 2025" (67 pages) goes deeply into latest advances, the potential and the objectives in these areas. What ORIS benefits, challenges, materials? Why does optical tuning control attract even for the opening non-optical frequencies of 6G? What materials?

Chapter 5. "Other optical and optronic support for 6G infrastructure and client devices : solid-state radiative cooling, PDRC, transparent hardware, smart windows" (93 pages) covers a large number of opportunities beyond OWC. Many are yet to be widely considered for 6G but, being important, they are your opportunity to fill gaps in the market. For example, every wireless generation uses infrastructure needing much more electricity and therefore needing much more cooling. PDRC does not cause local heating unlike conventional vapor compression cooling.

Dr. Peter Harrop, the primary author and CEO of Zhar Research advises, "PDRC converts heat to the infrared atmospheric window of frequency that emits into outer space and it reflects radiative heat arriving, sometimes doing even more. As 6G infrastructure increasingly merges into such things as high-rise buildings and solar drones loitering in the stratosphere, its cooling, energy harvesting and other services tend to become solid-state, optically transparent and shared with the host. 6G smart windows are one example covered. Learn which materials and technologies are winning in the 2025 research pipeline and in other work and planning."

Chapter 6. "Optical Signal Processing OSP, photovoltaics including as multifunctional 6G infrastructure and client devices, Far IR THz waveguides and cable, fiber optics, optronic sensors" (92 pages) is a deep dive into these aspects. What OSP advances are relevant to 6G? Materials? How will photovoltaics retain the fastest cost reduction and double output for a given area? Relevance to 6G infrastructure and client devices? PDRC cooling of the challenging cold side of thermoelectric harvesters needed? Photovoltaics handling data? Thermovoltaics? What are the many optronic sensors needed for 6G? Next THz waveguides and possibility of cable? Fiber optics reinvented? Materials winning in 2025 research?

Company profiles: 6G relevance and progress

The report then ends with 51 pages covering Chapter 7. "40 companies involved in "6G materials and hardware: products, plans, patents, Zhar Research appraisals: 2025-6", including 6G-related patents, achievements, intentions, and commentary.

The report, "6G Communications Optical and Optronic Opportunities: Markets, Technologies 2026-2046" is your essential guide.

CAPTION: Optical, optronic opportunities for 6G infrastructure and client devices 2026-2046. Source, "6G Communications Optical and Optronic Opportunities: Markets, Technologies 2026-2046".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and focus of this report
    • 1.1.1. General
    • 1.1.2. Infogram: 6G optical, optronic opportunities with infrastructure and client devices 2026-2046
    • 1.1.3. Infogram: increasing adoption of optics/ optronics for 6G - nine candidates
    • 1.1.4. Lessons from analysis of 245 latest researches and recommendations
  • 1.2. Methodology of this analysis
  • 1.3. 17 conclusions for 6G Communications systems and hardware with 10 infograms
  • 1.4. 11 SWOT appraisals
    • 1.4.1. SWOT appraisal of 6G adding sub-THz, THz, near infrared and visible frequencies
    • 1.4.2. SWOT appraisal of Optical Wireless Communications for 6G
    • 1.4.3. SWOT appraisal of visible light communication VLC
    • 1.4.4. SWOT appraisal of 6G RIS
    • 1.4.5. SWOT appraisal Simultaneous Transmission And Reflection STAR-RIS
    • 1.4.6. SWOT appraisal of 6G RIS for Optical Wireless Communication OWC
    • 1.4.7. SWOT appraisal of Passive Daytime Radiative Cooling PDRC and materials prioritisation analysis
    • 1.4.8. SWOT appraisal of Optical Signal Processing for 6G
    • 1.4.9. SWOT appraisal of photovoltaics for 6G Zero Emission Devices ZED
    • 1.4.10. SWOT appraisal of terahertz far infrared cable waveguides in 6G system design
    • 1.4.11. SWOT appraisal of fiber optics in 6G system design
  • 1.5. 6G systems, materials and standards roadmaps in six lines 2026-2046
  • 1.6. Market forecasts for 6G materials, hardware, context 2026-2046 in 45 lines, graphs, explanation
    • 1.6.1. Overview
    • 1.6.2. Optical and optronic 6G materials and device market 2026-2046
    • 1.6.3. 6G fully passive metamaterial reflect-array market OWC and total $ billion 2029-2046
    • 1.6.4. Other forecasts 2026-2046 including 6G optronic RIS

2. Introduction

  • 2.1. Overview: lessons and planned 6G hardware anatomy
    • 2.1.1. Lessons from the evolution of wireless communication
    • 2.1.2. The 1G to 6G journey seeking higher performance
    • 2.1.3. Why 6G must come in two phases
    • 2.1.4. Situation with primary 6G infrastructure and client devices by type
    • 2.1.5. Detail on 6G Phase One
    • 2.1.6. Progressing to 6G Phase Two: spectrum, objectives, SWOT
  • 2.2. How many optical and optronic technologies are essential for 6G success
    • 2.2.1. Overview
    • 2.2.2. Increasing adoption of optics/ optronics for 6G - eight candidates
    • 2.2.3. OWC with fiber optics in a potential Tbps 6G network adding far IR (THz), near IR and visible light
    • 2.2.4. Mismatch of planned and researched 6G frequencies may invite usurpers
    • 2.2.5. SWOT appraisal of Optical Wireless Communications for 6G
    • 2.2.6. SWOT appraisal of Visible Light Communication VLC
  • 2.3. Likely radical advances in 6G materials
    • 2.3.1. Strong 6G trend from components-in-a-box to smart materials and metasurfaces with SWOT
    • 2.3.2. The place of metamaterials in 6G including optical
    • 2.3.3. SWOT appraisal for metamaterials and metasurfaces generally
    • 2.3.4. Electrically-functionalised transparent glass for 6G OTA, T-RIS
  • 2.4. Further reading - academic research examples through 2025 and new market research

3. Optical Wireless Communication infrastructure and client devices for 6G

  • 3.1. Optical Wireless Communication OWC including 2025 research
    • 3.1.1. OWC scope and potential with research advances through 2025
    • 3.1.2. Optical Satellite Networks between satellites and aircraft to satellite
    • 3.1.3. Optical ground stations: Airbus examples
    • 3.1.4. OWC relevance to 6G Communications: studies through 2025-6
  • 3.2. Optical 6G Communications including 2025 research
    • 3.2.1. General
    • 3.2.2. Infogram: Importance of optical/ optronic communication hardware in 6G
    • 3.2.3. Infogram: OWC with fiber optics in a potential Tbps 6G network adding far IR (THz), near IR and visible light
    • 3.2.4. Relevant 2025 research
    • 3.2.5. Application in 6G Non-Terrestrial Networks: activity of 6G-NTN
  • 3.3. Client devices for 6G gain more optical technology
    • 3.3.1. Human interfaced: smartphones, other
    • 3.3.2. Progress expected 2026-2046
    • 3.3.3. Research in 2025 on VLC to a smartphone and VLC processing
  • 3.4. Future OWC lasers, laser diodes, photodetectors and other OWC photonics revealed in 2025 and 2026 research
    • 3.4.1. Lasers
    • 3.4.2. Future 6G OWC LED, laser diode, photonic receiver and other devices and materials

4. Optical Reconfigurable Intelligent Surfaces ORIS and optical tuning for 6G including advances in 2025

  • 4.1. Overview
    • 4.1.1. Definitions, terminology, basics
    • 4.1.2. Optical tuning for GHz, mmWave and subTHz RIS with 2025 advances
  • 4.2. Optical Communication RIS called ORIS with SWOTs and 2025 advances
    • 4.2.1. Overview
    • 4.2.2. ORIS benefits and the Distributed RIS DRIS option
    • 4.2.3. ORIS challenges
    • 4.2.4. SWOT appraisal of 6G RIS for OWC
    • 4.2.5. SWOT appraisal of visible light communication
  • 4.3. ORIS implementation procedures
  • 4.4. Long range, underground, underwater and space OWC: RIS: research advances 2025 and earlier
    • 4.4.1. General
    • 4.4.2. RIS enhanced OWC vehicular networks and mobile environments
    • 4.4.3. Hybrid RF-FSO RIS
    • 4.4.4. Underwater UOWC systems
    • 4.4.5. Underground OWC needing RIS
    • 4.4.6. Laser stratospheric and space communications with RIS technology
  • 4.5. Short range and indoor OWC and its RIS: research advances through 2025 and earlier
    • 4.5.1. Indoors and short range in air
    • 4.5.2. Leveraging other indoor and short-range outdoor systems such as LiFi with RIS
  • 4.6. Metalenses for 6G including advances through 2025
  • 4.7. Mirror array ORIS design and application with 2025 advances

5. Other optical and optronic support for 6G infrastructure and client devices : solid-state radiative cooling, PDRC, transparent hardware, smart windows

  • 5.1. Overview
    • 5.1.1. General 6G situation
    • 5.1.2. Example of cooling windows that can also be 6G RIS
    • 5.1.3. Context: Thermal, dielectric, UWBG materials for 6G prioritised by number of latest research announcements
  • 5.2. Solid state cooling and temperature control suitable for 6G infrastructure
    • 5.2.1. 6G requirements involve many optical thermal solutions
    • 5.2.2. Leading candidate materials and structures compared
    • 5.2.3. Leading optical passive solid-state cooling for 5C to 20C drop 2026-2046
    • 5.2.4. PDRC basics, 10 companies' activity, winning materials in 2025 research, SWOT
    • 5.2.5. Specific optical cooling research advances in 2024 and 2025 relevant to 6G: materials, details
    • 5.2.6. Advanced Radiative Cooling for 6G including Janus and Anti-Stokes with SWOTs, analysis of 2025 research
    • 5.2.7. Potential for self-cooling lasers and other 6G by optical anti-Stokes fluorescence and Janus effect

6. Optical Signal Processing OSP, photovoltaics including as multifunctional 6G infrastructure and client devices, Far IR THz waveguides and cable, fiber optics, optronic sensors

  • 6.1. Overview
  • 6.2. Optical Signal Processing OSP for 6G
    • 6.2.1. Definition
    • 6.2.2. Devices involved
    • 6.2.3. SWOT appraisal of Optical Signal Processing for 6G
    • 6.2.4. OSP and allied advances through 2025 relevant to 6G
  • 6.3. Place of optics and optronics in 6G energy harvesting
    • 6.3.1. 13 energy harvesting technologies with place of optics, optronics for 6G
    • 6.3.2. 6G personal device, active RIS and UM MIMO base station power demands matched to energy harvesting options
    • 6.3.3. Electromagnetic energy harvesting toolkit by frequency: place of photovoltaics
    • 6.3.4. Energy harvesting system improvement strategies including photonics compatibility with "massless energy" with SWOT
    • 6.3.5. Significance of Zero Energy Devices ZED in 6G Communications infrastructure and client devices
    • 6.3.6. Device architecture
  • 6.4. How photovoltaics and variants are very important for 6G
    • 6.4.1. Experience curve of fastest cost reduction
    • 6.4.2. Massive power increases ahead
    • 6.4.3. Increasing 6G photovoltaic output per unit volume and area 2026-2046 with optronics, optical, other approaches
    • 6.4.4. Best photovoltaic research efficiencies trend to 2025
    • 6.4.5. Format options evolving 2026-2046 make it exceptionally versatile for 6G
    • 6.4.6. Photovoltaics by pn junction compared to other options 2026-2046
    • 6.4.7. Strong focus on perovskite photovoltaics - reasons and research progress 2025
    • 6.4.8. Thermoradiative photovoltaics for 6G infrastructure
  • 6.5. Design and materials of 6G waveguides and cables with SWOTs and 2025 research advances
    • 6.5.1. Uses and options
    • 6.5.2. THz graphene, PTFE, PBVE, PP, PE/PP, LiNb, InAs, GaP with two SWOTs and research advances through 2025
    • 6.5.3. Future fiber optic intermediary for 6G with SWOT: silica, sapphire, PBTP, PE, PI, FRP
    • 6.5.4. Photonics defined radio to cable and photonic integration for THz 6G
    • 6.5.5. SWOT appraisal of fiber optics in 6G system design
  • 6.6. Optronic sensors: photonic, infrared, LIDAR, optoelectronic memtransistors, photoelectric, photovoltaic

7. 40 companies involved in 6G materials and hardware: products, plans, patents, Zhar Research appraisals: 2025-6

  • 7.1. Overview: Likely 6G hardware landscape with examples of manufacturers and patenting trends, Apple, Intel, Cisco
    • 7.1.1. Rapidly changing situation 2025-6
    • 7.1.2. Examples of material patenting and literature trends
  • 7.2. AGC Japan
  • 7.3. Airbus Europe
  • 7.4. Alcan Systems Germany
  • 7.5. Alibaba China
  • 7.6. Alphacore USA
  • 7.7. China Telecom China Mobile, China Unicom, Huawei, ZTE, Lenovo, CICT China collaboration
  • 7.8. Ericsson Sweden
  • 7.9. Fractal Antenna Systems USA
  • 7.10. Greenerwave France
  • 7.11. Huawei China
  • 7.12. ITOCHU Japan
  • 7.13. Kymeta Corp. USA
  • 7.14. Kyocera Japan
  • 7.15. Metacept Systems USA
  • 7.16. Metawave USA
  • 7.17. NEC Japan
  • 7.18. Nokia Finland with LG Uplus South Korea
  • 7.19. NTT DoCoMo and NTTJapan
  • 7.20. Orange France
  • 7.21. Panasonic Japan
  • 7.22. Pivotal Commware USA
  • 7.23. Qualcomm USA
  • 7.24. Samsung Electronic South Korea
  • 7.25. Sekisui Japan
  • 7.26. SensorMetrix USA
  • 7.27. SK Telecom South Korea
  • 7.28. Sony Japan
  • 7.29. Teraview USA
  • 7.30. Vivo Mobile Communications China
  • 7.31. VTT Finland
  • 7.32. ZTE China