甲烷热解制氢:创新与成长机会
市场调查报告书
商品编码
1348572

甲烷热解制氢:创新与成长机会

Methane Pyrolysis-based Hydrogen Production: Innovation and Growth Opportunities

出版日期: | 出版商: Frost & Sullivan | 英文 42 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

甲烷热解透过经济高效、低排放气体的氢气生产促进氢气经济

随着向低碳、以氢为基础的经济的转变,能源产业正在寻求比蒸汽甲烷改性(SMR)碳排放显着降低并且比现有的电解的绿氢生产更经济的替代技术。我们鼓励寻找更具成本效益和永续的技术,例如甲烷热解(绿松石氢)。透过有效利用固态碳,进一步提高了甲烷热解的成本效益,这是其他竞争技术无法产生的。所生产的固态碳在电子、储能係统、轮胎生产、农业添加剂和建筑材料等多个领域具有潜在的应用前景。新兴企业目前处于甲烷热解研究、开发和商业化的前沿。研究包括甲烷分解的热分解法、热催化分解法和等离子体分解法,每种方法都有其自身的优点。

Frost & Sullivan 的研究首先对甲烷热解和传统制氢技术(SMR 和水电电解)进行比较分析。它涵盖了甲烷热解制氢的各个方面,并概述了热解、热催化和等离子体热解过程。我们评估每种方法的优势和挑战,并介绍每个领域的先驱公司。此外,它还提供了对技术驱动因素和挑战的见解,并提供了与甲烷热解相关的各种过程的技术经济分析。它还对专利格局和成长机会进行了全面分析,预计这些成长机会将在推动甲烷热解技术的采用方面发挥关键作用。

目录

战略问题

  • 为什么成长如此困难?策略要务 8 (TM):阻碍成长的要素
  • The Strategic Imperative 8(TM)
  • 三大战略重点对甲烷热解制氢的影响
  • 成长机会推动的Growth Pipeline Engine(TM)
  • 调查方法

成长机会分析

  • 分析范围
  • 成长促进因素
  • 成长阻碍因素
  • 低碳氢技术:比较

甲烷热解解制氢:技术分析

  • 调查概述和细分
  • 甲烷热解:技术概述与价值链
  • 在高温环境下将甲烷转化为氢气和低碳的热解
  • 催化热解加速甲烷分解成氢气和优质固体碳。
  • 基于等离子体的热解产生具有高甲烷转化率的高纯度氢气
  • 甲烷热解技术:比较分析

创新生态系统

  • 甲烷的催化分解、非催化热解和等离子体分解:主要参与者
  • 整体式大型甲烷热解厂:案例研究与路线图

成长分析

  • 美国领先基于甲烷热解制氢的专利格局
  • 新兴经济体主导资金筹措生态系统

充满成长机会的世界

  • 成长机会1:基于可再生天然气(RNG)的氢气生产可显着减少碳排放
  • 成长机会 2:来自甲烷热解的石墨烯和奈米管作为额外的收益来源
  • 成长机会3:利用先进核子反应炉在甲烷热解中产生热量

附录

  • 技术成熟度等级 (TRL):解释

下一步

  • 下一步
  • 为什么是霜冻,为什么是现在?
  • 免责声明
简介目录
Product Code: DABA

Methane Pyrolysis is Advancing the Hydrogen Economy through Cost-effective and Low-emission Hydrogen Production

The shift to a low-carbon, hydrogen-based economy is prompting the energy industry to explore more cost-effective and sustainable technologies, including methane pyrolysis (turquoise hydrogen), which offers significantly lower carbon emissions than steam methane reforming (SMR) and provides a more economical alternative to existing electrolysis-based green hydrogen production. Methane pyrolysis's cost-effectiveness can be further enhanced through the effective utilization of the solid carbon byproduct, which none of the other competing technologies produce. The solid carbon produced has potential applications across diverse sectors, such as electronics, energy storage systems, tire production, agricultural additives, and construction materials. Currently, emerging companies are at the forefront of methane pyrolysis research, development, and commercialization. Research encompasses thermal, thermocatalytic, and plasma decomposition methods for methane cracking, with each method offering unique advantages.

This Frost & Sullivan study opens by offering a comparative analysis of methane pyrolysis with conventional hydrogen production technologies (SMR and water electrolysis). It covers multiple aspects of hydrogen production through methane pyrolysis, providing an overview of the thermal, thermocatalytic, and plasma pyrolysis processes. The study evaluates each method's strengths and challenges and highlights the pioneering companies in each segment. In addition, it offers insight into the technology's driving forces and challenges and provides a techno-economic analysis of the various processes associated with methane pyrolysis. It also covers the patent landscape and offers a comprehensive analysis of the growth opportunities projected to play a pivotal role in driving the adoption of methane pyrolysis technology.

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on Methane Pyrolysis-based Hydrogen Production
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Growth Drivers
  • Growth Restraints
  • Low-carbon Hydrogen Production Technologies: A Comparison

Methane Pyrolysis-based Hydrogen Production: Technology Analysis

  • Research Summary and Segmentation
  • Methane Pyrolysis: Technology Description and Value Chain
  • Thermal Pyrolysis Converts Methane into Hydrogen and Low-grade Carbon in a High-temperature Environment
  • Catalytic Pyrolysis Accelerates Methane's Breakdown into Hydrogen and High-quality Solid Carbon
  • Plasma-based Pyrolysis Facilitates a High Methane Conversion Rate to Produce High-purity Hydrogen
  • Methane Pyrolysis Technologies: A Comparative Analysis

Innovation Ecosystem

  • Catalytic, Noncatalytic Thermal, and Plasma Decomposition of Methane: Important Participants
  • Monolith's Large-scale Methane Pyrolysis Plant: Case Study and Road Map

Growth Analysis

  • The United States Leads the Methane Pyrolysis-based Hydrogen Production Patent Landscape
  • Developed Economies Dominate the Funding Ecosystem

Growth Opportunity Universe

  • Growth Opportunity 1: Renewable Natural Gas (RNG)-based Hydrogen Production for Drastically Reduced Carbon Emissions
  • Growth Opportunity 2: Graphene and Nanotubes from Methane Pyrolysis as Additional Revenue Streams
  • Growth Opportunity 3: Utilizing Advanced Nuclear Reactors for Heat Generation in Methane Pyrolysis

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer