回收再利用聚合物的技术与IP(智慧财产权)分析
市场调查报告书
商品编码
1383274

回收再利用聚合物的技术与IP(智慧财产权)分析

Technology and IP Analysis of Upcycled Polymers

出版日期: | 出版商: Frost & Sullivan | 英文 62 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

专注于永续性以及对高性能、环保聚合物的需求推动回收再利用技术的进步

儘管全球聚合物的使用量稳定增加,但塑胶的回收率仍低于 10%,导致约 50% 的塑胶废弃物最终进入垃圾掩埋场。这主要是因为现有的化学和机械回收製程回收率低、消费量高,而且扩大规模通常成本高昂,阻碍了其采用。为此,塑胶回收相关人员正在开发新的回收再利用方法,以提高聚合物废弃物的回收率,并且更加节能且更易于规模化。

本研究重点关注现有和新兴的聚合物回收再利用技术以及它们如何改善循环经济并增加塑胶的付加。该研究详细分析了回收再利用领域的各种技术发展以及增强其商业性潜力的配合措施。

研究将回收再利用技术分为三类:「聚合物到聚合物」、「聚合物到分子」和「聚合物到材料」。这些分类是根据聚合物废弃物回收再利用过程中产生的最终产品的性质决定的。

这项研究包括多种聚合物废弃物,包括聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚苯乙烯(PS)、混合聚合物废弃物(MPW)和聚氨酯(PUR)。这些包括但不限于每种都有不同的回收再利用方法。

主要问题

  • 透过聚合物回收再利用促进循环经济
  • 生长促进和抑制因素
  • 技术生态系统
  • IP(智慧财产权)分析
  • 相关人员活动

目录

战略衝动

  • 为什么成长如此困难?
  • The Strategic Imperative 8(TM)
  • 关键战略因素对聚合物回收再利用技术的影响
  • 成长机会推动Growth Pipeline Engine(TM)
  • 调查方法

成长机会分析

  • 分析范围
  • 调查细分
  • 调查中回答的关键主题和问题
  • 现有回收技术的主要挑战
  • 聚合物回收再利用回收相对于回收的优势
  • 生长促进因子
  • 成长抑制因素

技术分析:从聚合物到聚合物

  • 将聚合物废弃物转化为聚合物:简介
  • DE-PE的高可扩展性有利于工业规模的商业化
  • 与聚合物官能基相关的高复杂性限制了其采用
  • 概述:聚合物到聚合物相关人员的创新

技术分析:从聚合物到分子

  • 将聚合物废弃物转化为添加剂、化学品和单体:简介
  • 利用阳光进行光诱导解聚以回收再利用聚合物废弃物
  • 学术界研究催化解聚,这是一种有前途的回收再利用方法
  • 饲料弹性和高产量促进 HTL 生长
  • 生物解聚促进聚合物回收再利用,实现永续性和能源效率
  • 从聚合物到分子的技术发展综述

技术分析:从聚合物到材料

  • 将聚合物废弃物转化为奈米材料:简介
  • 高温闪蒸聚合物废弃物生产石墨烯和碳奈米管
  • 基于微波的氧化降解聚合物废弃物回收再利用回收
  • 原料弹性增加了热解在聚合物废弃物回收再利用的应用
  • 透过水热碳化回收再利用聚合物废弃物,产率高达96%
  • 脱卤有望成为回收再利用难以回收的热塑性塑胶的低能耗途径
  • 低产量限制了静电纺丝用于聚合物废弃物回收再利用的采用
  • 从聚合物到材料的技术发展综述

专利分析

  • 美国在回收再利用聚合物的专利申请中占据主导地位。
  • 禁止向发展中市场出口塑胶废弃物促进聚合物回收再利用研究和开发

资金筹措和投资简介

  • 由于全球经济放缓,私人对回收再利用聚合物的投资下降
  • 创业投资专注于回收再利用聚合物的商业化
  • 着力加速私募基金商业化
  • 世界各地着名的公共资助活动

成长机会

  • 成长机会1:流程最佳化以支援混合废弃物回收再利用
  • 成长机会2:促进酵素回收再利用的计算方法
  • 成长机会3:加速热固性聚合物回收再利用

附录

下一步

简介目录
Product Code: DAC2

Focus on Sustainability and Need for High-performance, Environment-friendly Polymers Drives Advances in Upcycling Technologies

Although use of polymers is steadily increasing globally, the rate of recycling these plastics is still less than 10%, resulting in approximately 50% of the plastic waste getting dumped in landfills. This occurs primarily because existing chemical and mechanical recycling processes have low recycling rates, high energy consumption, and are often expensive to scale, which hinders their adoption. In response, stakeholders in plastic recycling are developing new upcycling approaches that will increase the recycling rate of polymeric waste, are energy efficient, and scale easily.

This research focuses on existing and emerging polymer upcycling technologies and how they improve and add value to plastics' circular economy. The study includes an in-depth analysis of various technological developments in upcycling and the efforts to increase their commercial potential.

The research categorizes upcycling technologies into three distinct categories: polymers to polymers, polymers to molecules, and polymers to materials. These categories are determined by the nature of the final product generated through the process of upcycling polymeric waste.

The studies encompass a range of polymeric waste materials, including but not limited to polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), polystyrene (PS), mixed polymeric waste (MPW), and polyurethane (PUR), each of which undergoes distinct upcycling approaches.

Key Discussion Points:

Advancing the Circular Economy through Polymer Upcycling: Challenges of existing recycling technologies and benefits of polymer upcycling over recycling

Growth Drivers and Restraints: Factors driving the demand for upcycled polymers and challenges associated with their adoption

Technology Ecosystem: A look into research and development (R&D) activities of existing and emerging polymer upcycling technologies and their current technology readiness levels (TRLs)

IP Analysis: Overview of the global patent filing activities of stakeholders in upcycled polymers

Stakeholder Activities: A glance at business strategies such as mergers and acquisitions (M&A), partnerships, joint ventures, and funding various stakeholders adopt to strengthen the development of polymer upcycling technologies

Table of Contents

Strategic Imperatives

  • Why Is It Increasingly Difficult to Grow?The Strategic Imperative 8™: Factors Creating Pressure on Growth
  • The Strategic Imperative 8™
  • The Impact of the Top 3 Strategic Imperatives on Polymer Upcycling Technologies
  • Growth Opportunities Fuel the Growth Pipeline Engine™
  • Research Methodology

Growth Opportunity Analysis

  • Scope of Analysis
  • Research Segmentation
  • Primary Topics and Questions the Study Will Answer
  • Primary Challenges with Existing Recycling Technologies
  • The Benefits of Polymer Upcycling over Recycling
  • Growth Drivers
  • Growth Restraints

Technology Analysis: Polymers to Polymers

  • Converting Polymeric Waste to Polymers: An Introduction
  • High Scalability of DE-PE Encouraging Commercialization at Industrial Scale
  • High Complexity Associated with Polymer Functionalization Limiting its Adoption
  • Summary: Innovations from Stakeholders in Polymers to Polymers

Technology Analysis: Polymers to Molecules

  • Converting Polymeric Waste to Additives, Chemicals, and Monomers: An Introduction
  • Photo-induced Depolymerization Using Sunlight to Upcycle Polymeric Waste
  • Academia to Research Catalytic Depolymerization, a Promising Upcycling Approach
  • Greater Feed Flexibility and High Yield Promoting HTL Growth
  • Biological Depolymerization Encouraging Polymer Upcycling toward Sustainability and Energy-efficiency
  • Summary of Technology Developments for Polymers to Molecules

Technology Analysis: Polymers to Materials

  • Converting Polymeric Waste into Nanomaterials: An Introduction
  • Flashing Polymeric Waste at High Temperatures to Produce Graphene and C Nanotubes
  • Microwave-based Oxidative Degradation for Upcycling Polymeric Waste
  • Feedstock Flexibility Increasing Adoption of Pyrolysis for Upcycling Polymeric Waste
  • Hydrothermal Carbonization Upcycling Polymeric Waste with Production Yields of up to 96%
  • Dehalogenation Promising a Low-energy Pathway to Upcycle Hard-to-recycle Thermoplastics
  • Low Production Yield Limiting the Adoption of Electrospinning for Upcycling Polymeric Waste
  • Summary of Technology Developments for Polymers to Materials

Patent Analysis

  • The United States Dominating Patent Filing in Upcycled Polymers
  • Ban on Plastic Waste Exports to Developing Markets Driving R&D in Polymer Upcycling

Funding & Investment Snapshot

  • Global Economic Slowdown Leading to Decline in Private Investment for Upcycled Polymers
  • Venture Capital Investment Focusing on Upcycled Polymer Commercialization
  • Private Funding Focusing on Accelerating Commercialization
  • Notable Public Funding Activities across the Globe

Growth Opportunities

  • Growth Opportunity 1: Process Optimization to Support Mixed-waste Upcycling
  • Growth Opportunity 2: Computational Approaches to Advance Enzymatic Upcycling
  • Growth Opportunity 3: Accelerated R&D in Upcycling Thermosetting Polymers

Appendix

  • Technology Readiness Levels (TRL): Explanation

Next Steps

  • Your Next Steps
  • Why Frost, Why Now?
  • Legal Disclaimer