封面
市场调查报告书
商品编码
1568898

美国燃料电池电动卡车 (FCET) 产业二氧化碳排放生命週期评估(2024-2040)

Assessment of CO2 Emissions Life Cycle in the Fuel Cell Electric Truck Sector, United States, 2024-2040

出版日期: | 出版商: Frost & Sullivan | 英文 73 Pages | 商品交期: 最快1-2个工作天内

价格
简介目录

采用清洁氢气生产源预计每 FCET 二氧化碳排放减少 43%,推动永续交通的变革性成长。

Frost & Sullivan 对燃料电池电动卡车 (FCET) 的二氧化碳 (CO2)排放进行了全面分析,特别是作为美国卡车运输行业潜在燃料的氢气。我们的分析从考虑氢的基本原理开始,并揭示了与传统燃料相比,它具有减少生命週期排放的潜力。

从灰氢到可再生氢源,我们深入研究了不同的氢生产方法,并揭示了每种方法都有不同的碳足迹。我们将重点放在与燃料电池汽车製造相关的二氧化碳排放,以确定燃料电池堆和储存槽等零件的二氧化碳排放量。此外,还预测了卡车使用寿命期间的二氧化碳总排放,并将其与电池电动卡车和柴油卡车进行比较。

最终,这项研究强调了迫切需要过渡到更清洁的氢气生产方法并优化车辆製造,以实现卡车运输行业二氧化碳排放量的大幅减少。

研究期间为2023年至2030年。

目录

燃料电池电动卡车(FCET)产业二氧化碳排放的转变

  • 为什么成长如此困难?
  • The Strategic Imperative 8(TM)
  • 燃料电池电动卡车(FCET)产业二氧化碳排放三大战略挑战的影响

成长环境:氢生态系统

  • 氢是未来的燃料
  • 燃料电池电动卡车生命週期二氧化碳流量
  • 各种氢气方法

生态系统

  • 调查范围
  • 动力传动系统技术细分

成长发电机

  • 生长促进因子
  • 成长抑制因素

制氢过程中CO2排放途径

  • 主要氢气方法分析
  • 影响氢气方法采用的关键因素
  • 因素 1:低二氧化碳排放和准备水平
  • 因素 2:清洁氢气计画和目标
  • 因素 3:各州的氢气生产潜力与计划
  • 加州氢气生产采用预测
  • 西南地区氢气产量采用预测
  • 德克萨斯州氢气生产采用预测
  • 氢气生产中二氧化碳排放的轨迹

燃料电池电动卡车製造过程中的二氧化碳排放途径

  • 燃料电池电动卡车主要零件
  • 燃料电池堆
  • 氢气储存槽
  • 电池
  • 二氧化碳排放轨迹:FCET 製造

成长发生器:FCET 运作期间二氧化碳排放轨迹:LDT

  • LDT使用案例的特征和预测的先决条件
  • LDT循环A和H-H2消费量和CO2排放
  • LDT循环A~H-kgCO2/英里

成长发生器:FCET 运作期间的二氧化碳排放轨迹:MDT

  • MDT使用案例的特征和预测的先决条件
  • MDT 循环 A 和 H-H2消费量以及 CO2排放
  • MDT循环A~H-kgCO2/英里

成长发生器:FCET 运作期间的二氧化碳排放轨迹:HDT

  • HDT使用案例的特征和预测的先决条件
  • HDT循环A
  • HDT循环H
  • HDT循环A~H-kgCO2/英里

内燃机汽车、纯电动车与燃料电池汽车二氧化碳排放轨迹比较

  • LDT:ICE、BEV、FCEV 的比较(A&H 循环)
  • MDT:ICE、BEV、FCEV 的比较(A&H 循环)
  • HDT:ICE、BEV、FCEV 的比较(A&H 循环)

重点

  • 前 3 项

成长机会宇宙

  • 成长机会 1:追踪二氧化碳排放
  • 成长机会2:电池和燃料电池製造的区域垂直整合
  • 成长机会 3:氢基础设施的扩建

最佳实践认证

  • 最佳实践评估

FROST RADAR

  • FROST RADAR

下一步

  • 成长机会的好处和影响
  • 下一步
  • 图表列表
  • 免责声明
简介目录
Product Code: PFI2-42

Adoption of Clean Hydrogen Production Sources Will Drive Transformational Growth in Sustainable Transportation Due to Reductions in CO2 Emissions by 43% Per FCET

In this study, Frost & Sullivan offers a comprehensive exploration of the carbon dioxide (CO2) trail of a fuel cell electric truck (FCET) by investigating the carbon emission implications of FCETs, particularly with focus on hydrogen as a prospective fuel for the trucking industry in the United States. Our analysis begins with the rationale for considering hydrogen, highlighting its potential to mitigate life cycle emissions as compared to conventional fuels.

We delve into various hydrogen production methods, ranging from grey hydrogen to renewable sources, each carrying distinct carbon footprints. Emphasis falls on the CO2 emissions associated with manufacturing fuel cell vehicles, pinpointing significant contributions from components including fuel cell stacks and hydrogen storage tanks. Furthermore, we project total CO2 emissions throughout the operation of a truck, drawing comparative insights with its battery electric and diesel truck counterparts.

Ultimately, this study underscores the urgency of transitioning to cleaner hydrogen production methods and optimizing vehicle manufacturing to achieve substantial CO2 emission reductions in the trucking sector.

The study period is 2023 to 2030.

Table of Contents

Transformation in CO2 Emissions from the Fuel Cell Electric Truck Industry

  • Why is it Increasingly Difficult to Grow?
  • The Strategic Imperative 8™
  • The Impact of the Top Three Strategic Imperatives on the CO2 Emissions of Fuel Cell Electric Truck (FCET) Industry

Growth Environment:Hydrogen Ecosystem

  • Hydrogen is the Fuel of the Future
  • Life Cycle CO2 Flow of a Fuel Cell Electric Truck
  • Different Methods of Producing Hydrogen

Ecosystem

  • Research Scope
  • Powertrain Technology Segmentation

Growth Generator

  • Growth Drivers
  • Growth Restraints

CO2 Emission Trail During Hydrogen Production

  • Analysis of Major Hydrogen Production Methods
  • Key Factors Impacting Adoption of H2 Production Methods
  • Factor 1: Lower CO2 Emissions & Readiness Levels
  • Factor 2: Clean Hydrogen Programs and Targets
  • Factor 3: States' H2 Production Potential & Plan
  • Adoption Forecast of H2 Production in California
  • Adoption Forecast of H2 Production in the Southwest
  • Adoption Forecast of H2 Production in Texas
  • CO2 Emission Trail from H2 Production

CO2 Emission Trail During the Manufacture of a Fuel Cell Electric Truck

  • Major Components of a Fuel Cell Electric Truck
  • Fuel Cell Stack
  • Hydrogen Storage Tanks
  • Battery
  • CO2 Emission Trail: Manufacture of an FCET

Growth Generator: CO2 Emission Trail During Operation of an FCET: LDT

  • LDT Use Case Characteristics and Forecast Assumptions
  • LDT Cycle A & H-H2 Consumption and CO2 Emissions
  • LDT Cycle A to H-kgCO2 Per Mile

Growth Generator: CO2 Emission Trail during Operation of an FCET: MDT

  • MDT Use Case Characteristics and Forecast Assumptions
  • MDT Cycle A & H-H2 Consumption and CO2 Emissions
  • MDT Cycle A to H - kgCO2 per Mile

Growth Generator: CO2 Emission Trail during Operation of an FCET: HDT

  • HDT Use Case Characteristics and Forecast Assumptions
  • HDT-Cycle A
  • HDT-Cycle H
  • HDT Cycle A to H-kgCO2 Per Mile

CO2 Emission Trail Comparison between ICE Vehicles, BEVs, and FCEVs

  • LDT: ICE, BEV, and FCEV Comparison (Cycle A & H)
  • MDT: ICE, BEV, and FCEV Comparison (Cycle A & H)
  • HDT: ICE, BEV, and FCEV Comparison (Cycle A & H)

Key Takeaways

  • Top 3 Takeaways

Growth Opportunity Universe

  • Growth Opportunity 1: CO2 Emissions Tracking
  • Growth Opportunity 2: Geographic-specific Vertical Integration for Battery and Fuel Cell Manufacture
  • Growth Opportunity 3: Hydrogen Infrastructure Expansion

Best Practices Recognition

  • Best Practices Recognition

Frost Radar

  • Frost Radar

Next Steps

  • Benefits and Impacts of Growth Opportunities
  • Next Steps
  • List of Exhibits
  • Legal Disclaimer