![]() |
市场调查报告书
商品编码
1892094
2025 年流程自动化的未来The Future of Process Automation, 2025 |
||||||
共生智慧和自动驾驶将引领流程产业的变革性成长。
本研究检验了製程自动化市场的未来,并分析了流程工业和混合工业中从传统硬体中心系统向软体定义、人工智慧驱动的自主运作的转型。研究采用ISA-95技术层分类法,评估了石油天然气、化学、製药和连续加工产业的市场演变和竞争动态。
透过全面的供应商分析,我们识别出下一代自动化架构的竞争性策略愿景,并揭示了三大关键成长机会:人工智慧驱动的自主优化平台、边缘人工智慧预测性维护生态系统以及开放式自动化整合平台。颠覆性技术、创新经营模式和日益激烈的竞争等策略挑战正在从根本上重塑传统的自动化范式。
分析表明,劳动力挑战、营运复杂性、网路安全威胁和监管合规要求正在推动流程工业架构向共生智慧和自主运行方向演进。主要发现包括:现场级高阶控制系统和跨层平台技术具有最大的成长潜力,而智慧营运管理则面临巨大的实施障碍。
这项研究深入分析了推动流程自动化转变为软体定义自主营运框架的技术和市场驱动因素。
报告摘要:流程自动化市场,2024-2032年
全球过程自动化市场预计在2024年达到481.3亿美元,到2032年将达到1,842.9亿美元,2024年至2032年的复合年增长率(CAGR)为18.3%。该市场涵盖工业人工智慧、自主运作、数位双胞胎和预测性维护解决方案,推动智慧化、自优化和互联化工业系统迈入新时代。软体定义自动化、即时人工智慧驱动运作和先进数位双胞胎的应用将帮助流程工业提高效率、安全性和营运韧性。
关键市场趋势与洞察
市场规模及预测
市场概览 - 流程自动化市场,2024-2032 年
在全球范围内,工业自动化、工业人工智慧和数数位双胞胎市场正在融合,重新定义着各行业的竞争力和效率。流程自动化产业正从人工监控系统转型为由人工智慧决策引擎和边缘连接主导的整合式智慧营运。
影响自动驾驶市场的关键结构性变化包括:
工业4.0正在推动自动化从被动回应向自学习、自主工作流程转型,从而减少对人的依赖,并弥合技能短缺造成的创新鸿沟。艾默生、Honeywell、西门子和横河电机等领先的自动化公司正主导着向「自主设计」的转型,将开放式架构、零信任网路安全和可扩展资料模型相结合。
这些变化与工业人工智慧市场的全球大趋势相符。人工智慧驱动的分析引擎如今已成为大多数製程控制系统的基础。加之预测性维护市场的进步,工业企业正朝着「始终运作」的营运模式发展,将停机时间减少高达30%。
这项转型将形成一个“自动化三角”,将人工智慧、数位双胞胎平台和自主控制系统结合在一起,构成未来工业价值链的核心基础设施。
市场规模与收入预测 - 过程自动化市场,2024-2032 年
预计製程自动化市场将从2024年的481.3亿美元成长到2032年的1,842.9亿美元,复合年增长率高达18.3%。在这个生态系统中,工业人工智慧市场和自动驾驶市场等相关产业正在快速扩张,从而形成协同成长势头。
增强型现场控制与嵌入式人工智慧是工业数位化发展的核心引擎,它使工厂能够演进为完全自主的系统。数位双胞胎技术的整合提升了可视性和预测性控制能力,而跨层软体平台则实现了现场、边缘和企业系统的近实时统一。
预测性维护市场也促进了这一扩张,基于人工智慧的监控和故障建模成为现代製程控制框架的核心能力。
分析范围-流程自动化市场,2024-2032年
弗若斯特沙利文的这项研究以流程自动化、工业人工智慧和自主营运市场的交集为中心,分析了这三个市场将对全球製造业、能源和化学产业产生的综合影响。
预测期为2023年至2032年,收入以美元计,依製造商层级计算。本分析不包括机器人和业务流程自动化,而是专注于人工智慧驱动的操作技术,这些技术能够提升工业环境中的即时控制、安全性和可靠性。
细分市场分析 - 流程自动化市场,2024-2032 年
市场区隔反映了传统自动化和工业人工智慧市场的整合:
这些细分领域共同代表了工业运作各层向智慧自主网路的技术融合。这些技术的融合在人工智慧预测、数位模拟和流程执行之间建构了一个共生生态系统,构成了自主营运市场的基础。
成长要素- 流程自动化市场,2024-2032 年
成长限制因素 - 流程自动化市场,2024-2032 年
竞争格局-流程自动化市场,2024-2032年
自动驾驶市场的竞争特征是主要企业和大型控制系统供应商之间快速的技术创新。
弗若斯特沙利文公司已确定以下主要参与者:
这些公司正朝着统一的愿景迈进,即采用软体定义、云端原生技术来建构自主的工业生态系统。它们的策略方向强调模组化人工智慧平台、开放原始码协作和基于SaaS的预测控制,从而推动工业人工智慧、数位双胞胎和预测性维护领域的市场整合。
常见问题:
Symbiotic Intelligence and Autonomous Operations Herald Transformational Growth in Process Industries
This study examines the future of the process automation market, analyzing the shift from traditional hardware-centric systems to software-defined, AI-driven autonomous operations within process and hybrid industries. The research employs ISA-95 technology layer segmentation to assess market evolution and competitive dynamics across oil & gas, chemicals, pharmaceuticals, and continuous process sectors.
Through comprehensive vendor analysis, the study identifies competing strategic visions for next-generation automation architectures, revealing three critical growth opportunities: AI-driven autonomous optimization platforms, edge AI predictive maintenance ecosystems, and open automation integration platforms. Strategic imperatives, including disruptive technologies, innovative business models, and competitive intensity, fundamentally reshape traditional automation paradigms.
The analysis demonstrates process industries' architectural evolution toward symbiotic intelligence and autonomous operations, driven by workforce challenges, operational complexity, cybersecurity threats, and regulatory compliance demands. Key findings indicate that field-level enhanced control systems and cross-layer platform technologies represent the highest growth potential, while intelligent operations management faces significant implementation barriers.
This research provides insights into the technological and market forces transforming process automation toward software-defined, autonomous operational frameworks.
Report Summary: Process Automation Market, 2024-2032
The global process automation market was valued at USD 48.13 billion in 2024 and is projected to reach USD 184.29 billion by 2032, growing at a CAGR of 18.3% from 2024 to 2032. This market spans Industrial AI, Autonomous Operations, Digital Twin, and Predictive Maintenance solutions, driving a new era of intelligent, self-optimizing, and connected industrial systems. The adoption of software-defined automation, real-time AI-driven operations, and advanced digital twins positions process industries for enhanced efficiency, safety, and operational resilience.
Key Market Trends & Insights
Market Size & Forecast
Market Overview - Process Automation Market, 2024-2032
Globally, the convergence of the industrial automation, Industrial AI, and Digital Twin markets is redefining competitiveness and efficiency across sectors. The process automation industry is transitioning from manual monitoring systems to integrated, intelligent operations led by AI-based decision engines and edge connectivity.
Key structural changes influencing the Autonomous Operations market include:
Industry 4.0 is driving automation from reactive to self-learning, autonomous workflows, reducing manual dependency and closing the innovation gap caused by skill shortages. Major automation players such as Emerson, Honeywell, Siemens, and Yokogawa lead the shift toward ""autonomy by design,"" combining open architecture, zero-trust cybersecurity, and scalable data models.
These changes synchronize with global megatrends in the Industrial AI market, where AI-driven analytics engines now underpin most process control systems. Paired with advancements in the Predictive Maintenance market, industrial companies are moving toward ""always-on"" operations that lower downtime by up to 30%.
This transformation creates a cohesive ""Automation Triangle""-with AI, Digital Twin infrastructure, and autonomous control systems forming the core infrastructure of tomorrow's industrial value chain.
Market Size and Revenue Forecast - Process Automation Market, 2024-2032
The process automation market is forecasted to grow from USD 48.13 billion in 2024 to USD 184.29 billion by 2032, recording an exceptional CAGR of 18.3%. Within this ecosystem, adjacent industries such as the Industrial AI market and Autonomous Operations market are expanding rapidly, providing synergistic growth momentum.
Enhanced Field Control-powered by embedded AI-is the growth engine of industrial digitization, enabling factories to evolve toward fully autonomous setups. The integration of Digital Twin technologies drives visibility and predictive control, while cross-layer software platforms unify field, edge, and enterprise systems in near real time.
The Predictive Maintenance market complements this expansion, as AI-based monitoring and failure modeling become core functions of modern process control frameworks.
Scope of Analysis - Process Automation Market, 2024-2032
This Frost & Sullivan study centers on the intersection of the process automation market, Industrial AI market, and Autonomous Operations market, analyzing their collective impact on global manufacturing, energy, and chemical sectors. The scope covers:
The forecast period runs through 2023-2032, with revenue measured in US dollars at the manufacturer level. The analysis excludes robotic and business process automation and focuses on AI-driven operational technologies that enhance real-time control, safety, and reliability in industrial settings.
Segmentation Analysis - Process Automation Market, 2024-2032
The market's segmentation mirrors the integration between traditional automation and the Industrial AI market:
Collectively, these segments signify the technological merging of industrial operational layers into an intelligent autonomy network. The integration of these technologies is creating a symbiotic ecosystem between AI prediction, digital simulation, and process execution-forming the backbone of the Autonomous Operations market.
Growth Drivers - Process Automation Market, 2024-2032
Growth Restraints - Process Automation Market, 2024-2032
Competitive Landscape - Process Automation Market, 2024-2032
Competition in the Autonomous Operations market is defined by rapid innovation among industrial AI champions and leading control system providers.
Frost & Sullivan identifies the following key participants:
These players are converging on a unified vision-software-defined, cloud-native technologies that enable autonomous industrial ecosystems. Their strategic direction emphasizes modular AI platforms, open-source collaboration, and SaaS-based predictive control, driving market consolidation across the Industrial AI, Digital Twin, and Predictive Maintenance segments.
FAQ: