封面
市场调查报告书
商品编码
1518525

燃料电池电动客车市场规模- 依燃料电池类型(质子交换膜燃料电池(PEMFC)、固态氧化物燃料电池(SOFC)、直接甲醇燃料电池(DMFC))、应用(城内、城际)、客车类型、范围、最终用户和预测,2024 - 2032

Fuel Cell Electric Buses Market Size - By Fuel Cell Type (Proton Exchange Membrane Fuel Cell (PEMFC), Solid Oxide Fuel Cell (SOFC), Direct Methanol Fuel Cell (DMFC)), Application (Intracity, Intercity), Bus Type, Range, End User & Forecast, 2024 - 2032

出版日期: | 出版商: Global Market Insights Inc. | 英文 260 Pages | 商品交期: 2-3个工作天内

价格
简介目录

由于旨在促进其发展的高收入补助金的增加,全球燃料电池电动客车市场在 2024 年至 2032 年间的复合年增长率将超过 8%。世界各地的政府和公共交通机构正在提供大量资金和激励措施,以加速燃料电池技术在城市交通系统中的采用。这些补助支持燃料电池电动公车的采购、加氢站基础设施开发以及先进燃料电池技术的研究。

例如,2024 年 7 月,俄亥俄州中部交通管理局获得了 2,280 万美元的拨款,用于购买 10 辆新的氢燃料电池电动公车。这笔资金来自美国交通部联邦运输管理局,也将有助于在麦金利大道设施建立一个新的加氢站。

燃料电池电动公车提供零排放交通解决方案,减少温室气体排放并改善城市地区的空气品质。与电池电动公车相比,它们的行驶里程更长,加油时间更短,这使得它们对于在公共交通车队中大规模部署具有吸引力。随着城市和地区致力于实现碳中和目标,对政府拨款支持的燃料电池电动公车的需求预计将增长,从而推动全球公共交通行业的创新和永续发展。

燃料电池电动客车产业的整体规模根据燃料电池类型、应用、客车类型、范围、最终用途和地区进行分类。

燃料电池电动巴士市场的需求不断增加,部分原因是固态氧化物燃料电池(SOFC)技术的进步。 SOFC 为电动公车提供了多项优势,包括更高的效率、更低的排放以及燃料来源的灵活性。它们在高温下运行,能够利用氢气、天然气和沼气等各种燃料高效发电。随着世界各国政府和交通机构寻求公共交通车队脱碳,SOFC 驱动的电动公车因其提供长行驶里程和快速加油的能力而受到关注,使其适合城市和城际交通应用。人们对 SOFC 技术日益浓厚的兴趣凸显了其重塑永续公共交通未来的潜力。

由于燃料电池电动巴士适合短程且频繁停靠的路线,因此燃料电池电动巴士市场对接驳车的需求不断增加。由燃料电池驱动的接驳车提供零排放运输解决方案,以减少对城市和校园环境的影响。与电池电动公车相比,它们的加油时间短、行驶里程长,使其成为全天连续运行的理想选择。随着城市和机构优先考虑永续交通选择,燃料电池电动班车因其效率、可靠性以及对清洁空气品质和减少人口稠密地区噪音污染的贡献而越来越受欢迎。

在减少排放和增强公共交通永续性措施的推动下,北美燃料电池电动巴士市场的需求不断增长。该地区的交通机构和市政当局正在增加对燃料电池电动公车的投资,以实现清洁能源目标并改善空气品质。这些公车提供了传统柴油公车的零排放替代方案,与纯电动公车相比,行驶里程更长,加油时间更短。凭藉支持性的政府政策、资助计画和燃料电池技术的进步,北美地区准备扩大其燃料电池电动巴士车队,推广更绿色的城市交通解决方案。

目录

第 1 章:方法与范围

第 2 章:执行摘要

第 3 章:产业洞察

  • 产业生态系统分析
  • 供应商格局
    • 原物料供应商
    • 汽车零件製造商
    • 汽车製造商/製造商 (OEM)
    • 技术提供者
    • 经销商/分销商
    • 终端用户
  • 利润率分析
  • 技术与创新格局
  • 专利分析
  • 重要新闻和倡议
  • 监管环境
  • 衝击力
    • 成长动力
      • 人们日益关注空气污染和温室气体排放
      • 政府鼓励采用零排放车辆
      • 燃料电池技术、氢基础设施和电池技术的不断进步
      • 快速的城市化导致对公共交通解决方案的更大需求
    • 产业陷阱与挑战
      • 与燃料电池组件供应链相关的挑战
      • 初始成本高
  • 成长潜力分析
  • 波特的分析
  • PESTEL分析

第 4 章:竞争格局

  • 介绍
  • 公司市占率分析
  • 竞争定位矩阵
  • 战略展望矩阵

第 5 章:市场估计与预测:按燃料电池类型 2021 - 2032 年

  • 主要趋势
  • 质子交换膜燃料电池(PEMFC)
  • 固态氧化物燃料电池(SOFC)
  • 直接甲醇燃料电池(DMFC)

第 6 章:市场估计与预测:依应用分类,2021 - 2032

  • 主要趋势
  • 城内
  • 城际

第 7 章:市场估计与预测:按巴士类型,2021 - 2032 年

  • 主要趋势
  • 穿梭巴士
    • 城内
    • 城际
  • 公车巴士
    • 城内
    • 城际
  • 铰接式/大容量客车
    • 城内
    • 城际
  • 长途客车
    • 城内
    • 城际

第 8 章:市场估计与预测:按范围划分,2021 年 - 2032 年

  • 主要趋势
  • 150英里以下
  • 150 至 300 英里
  • 300英里以上

第 9 章:市场估计与预测:按最终用户,2021 - 2032 年

  • 主要趋势
  • 公共交通当局
  • 私营运输公司
  • 旅游业者

第 10 章:市场估计与预测:按地区,2021 - 2032

  • 主要趋势
  • 北美洲
    • 我们
    • 加拿大
  • 欧洲
    • 英国
    • 德国
    • 法国
    • 义大利
    • 俄罗斯
    • 西班牙
    • 欧洲其他地区
  • 亚太地区
    • 中国
    • 日本
    • 印度
    • 韩国
    • 澳洲
    • 东南亚
    • 亚太地区其他地区
  • 拉丁美洲
    • 巴西
    • 墨西哥
    • 阿根廷
    • 拉丁美洲其他地区
  • MEA
    • 阿联酋
    • 南非
    • 沙乌地阿拉伯
    • MEA 的其余部分

第 11 章:公司简介

  • Ballard Power Systems Inc.
  • Beiqi Foton Motor Co., Ltd.
  • Bloom Energy Corporation
  • BYD Company Ltd.
  • Ceres Power Holdings plc
  • Daimler AG
  • EasyMile SAS
  • El Dorado National
  • Gillig LLC
  • Hydrogenics Corporation
  • Hyundai Motor Company
  • Iveco S.p.A.
  • New Flyer Industries Inc.
  • Proterra Inc.
  • Riversimple Engineering Limited
  • Solaris Bus & Coach S.A.
  • Tevva Motors Ltd.
  • Toyota Motor Corporation
  • Van Hool NV
  • Wrightbus International Limited
简介目录
Product Code: 9288

Global Fuel Cell Electric Buses market will witness over 8% CAGR between 2024 and 2032 due to rising high revenue grants aimed at promoting their development. Governments and public transportation agencies worldwide are offering substantial funding and incentives to accelerate the adoption of fuel cell technology in urban transit systems. These grants support the procurement of fuel cell electric buses, infrastructure development for hydrogen refueling stations, and research into advanced fuel cell technologies.

For instance, in July 2024, the Central Ohio Transit Authority was granted $22.8 million to finance the purchase of 10 new hydrogen fuel cell electric buses. This funding came from the U.S. Department of Transportation's Federal Transit Administration and will also contribute to the establishment of a new hydrogen fueling station at the McKinley Avenue facility.

Fuel cell electric buses offer zero-emission transportation solutions, reducing greenhouse gas emissions and improving air quality in urban areas. Their longer driving range and shorter refueling times compared to battery electric buses make them attractive for large-scale deployment in public transportation fleets. As cities and regions committed to achieving carbon neutrality goals, the demand for fuel cell electric buses supported by government grants is expected to grow, driving innovation and sustainability in the public transit sector globally.

The overall Fuel Cell Electric Buses Industry size is classified based on the fuel cell type, application, bus type, range, end-use, and region.

The fuel cell electric buses market is experiencing increased demand, driven in part by advancements in solid oxide fuel cell (SOFC) technology. SOFCs offer several advantages for electric buses, including higher efficiency, lower emissions, and flexibility in fuel sources. They operate at high temperatures, enabling efficient electricity generation from various fuels such as hydrogen, natural gas, and biogas. As governments and transit agencies worldwide seek to decarbonize public transportation fleets, SOFC-powered electric buses are gaining traction for their ability to provide long driving ranges and rapid refueling, making them suitable for urban and intercity transit applications. This growing interest in SOFC technology underscores its potential to reshape the future of sustainable public transportation.

The fuel cell electric buses market is witnessing increasing demand for shuttle buses due to their suitability for short-distance and frequent-stop routes. Shuttle buses powered by fuel cells offer zero-emission transportation solutions, reducing environmental impact in urban and campus environments. Their quick refueling times and extended driving ranges compared to battery electric buses make them ideal for continuous operation throughout the day. As cities and institutions prioritize sustainable transport options, fuel cell electric shuttle buses are gaining popularity for their efficiency, reliability, and contribution to cleaner air quality and reduced noise pollution in densely populated areas.

North America fuel cell electric buses market is experiencing growing demand driven by initiatives to reduce emissions and enhance public transportation sustainability. Transit agencies and municipalities across the region are increasingly investing in fuel cell electric buses to meet clean energy goals and improve air quality. These buses offer zero-emission alternatives to conventional diesel buses, with longer driving ranges and shorter refueling times compared to battery electric counterparts. With supportive government policies, funding programs, and advancements in fuel cell technology, North America is poised to expand its fleet of fuel cell electric buses, promoting greener urban transit solutions.

Table of Contents

Chapter 1 Methodology & Scope

  • 1.1 Research design
    • 1.1.1 Research approach
    • 1.1.2 Data collection methods
  • 1.2 Base estimates and calculations
    • 1.2.1 Base year calculation
    • 1.2.2 Key trends for market estimates
  • 1.3 Forecast model
  • 1.4 Primary research & validation
    • 1.4.1 Primary sources
    • 1.4.2 Data mining sources
  • 1.5 Market definitions

Chapter 2 Executive Summary

  • 2.1 Industry 360 degree synopsis, 2021 - 2032

Chapter 3 Industry Insights

  • 3.1 Industry ecosystem analysis
  • 3.2 Supplier landscape
    • 3.2.1 Raw material suppliers
    • 3.2.2 Automotive parts manufacturer
    • 3.2.3 Automakers/Manufacturers (OEMs)
    • 3.2.4 Technology providers
    • 3.2.5 Dealers/Distributors
    • 3.2.6 End-users
  • 3.3 Profit margin analysis
  • 3.4 Technology & innovation landscape
  • 3.5 Patent analysis
  • 3.6 Key news & initiatives
  • 3.7 Regulatory landscape
  • 3.8 Impact forces
    • 3.8.1 Growth drivers
      • 3.8.1.1 Increasing concerns about air pollution and greenhouse gas emissions
      • 3.8.1.2 Governments incentives to promote the adoption of zero-emission vehicles
      • 3.8.1.3 Continuous advancements in fuel cell technology, hydrogen infrastructure, and battery technology
      • 3.8.1.4 Rapid urbanization is leading to greater demand for public transportation solutions
    • 3.8.2 Industry pitfalls & challenges
      • 3.8.2.1 Challenges related to the supply chain for fuel cell components
      • 3.8.2.2 High initial costs
  • 3.9 Growth potential analysis
  • 3.10 Porter's analysis
  • 3.11 PESTEL analysis

Chapter 4 Competitive Landscape, 2023

  • 4.1 Introduction
  • 4.2 Company market share analysis
  • 4.3 Competitive positioning matrix
  • 4.4 Strategic outlook matrix

Chapter 5 Market Estimates & Forecast, By Fuel Cell type 2021 - 2032 ($Bn, Units)

  • 5.1 Key trends
  • 5.2 Proton exchange membrane fuel cell (PEMFC)
  • 5.3 Solid oxide fuel cell (SOFC)
  • 5.4 Direct methanol fuel cell (DMFC)

Chapter 6 Market Estimates & Forecast, By Application, 2021 - 2032 ($Bn, Units)

  • 6.1 Key trends
  • 6.2 Intracity
  • 6.3 Intercity

Chapter 7 Market Estimates & Forecast, By Bus Type, 2021 - 2032 ($Bn, Units)

  • 7.1 Key trends
  • 7.2 Shuttle buses
    • 7.2.1 Intracity
    • 7.2.2 Intercity
  • 7.3 Transit buses
    • 7.3.1 Intracity
    • 7.3.2 Intercity
  • 7.4 Articulated/High-capacity buses
    • 7.4.1 Intracity
    • 7.4.2 Intercity
  • 7.5 Coach buses
    • 7.5.1 Intracity
    • 7.5.2 Intercity

Chapter 8 Market Estimates & Forecast, By Range, 2021 - 2032 ($Bn, Units)

  • 8.1 Key trends
  • 8.2 Below 150 miles
  • 8.3 150 to 300 miles
  • 8.4 Above 300 miles

Chapter 9 Market Estimates & Forecast, By End-Users, 2021 - 2032 ($Bn, Units)

  • 9.1 Key trends
  • 9.2 Public transit authorities
  • 9.3 Private transportation companies
  • 9.4 Tour operators

Chapter 10 Market Estimates & Forecast, By Region, 2021 - 2032 ($Mn, Units)

  • 10.1 Key trends
  • 10.2 North America
    • 10.2.1 U.S.
    • 10.2.2 Canada
  • 10.3 Europe
    • 10.3.1 UK
    • 10.3.2 Germany
    • 10.3.3 France
    • 10.3.4 Italy
    • 10.3.5 Russia
    • 10.3.6 Spain
    • 10.3.7 Rest of Europe
  • 10.4 Asia Pacific
    • 10.4.1 China
    • 10.4.2 Japan
    • 10.4.3 India
    • 10.4.4 South Korea
    • 10.4.5 Australia
    • 10.4.6 Southeast Asia
    • 10.4.7 Rest of Asia Pacific
  • 10.5 Latin America
    • 10.5.1 Brazil
    • 10.5.2 Mexico
    • 10.5.3 Argentina
    • 10.5.4 Rest of Latin America
  • 10.6 MEA
    • 10.6.1 UAE
    • 10.6.2 South Africa
    • 10.6.3 Saudi Arabia
    • 10.6.4 Rest of MEA

Chapter 11 Company Profiles

  • 11.1 Ballard Power Systems Inc.
  • 11.2 Beiqi Foton Motor Co., Ltd.
  • 11.3 Bloom Energy Corporation
  • 11.4 BYD Company Ltd.
  • 11.5 Ceres Power Holdings plc
  • 11.6 Daimler AG
  • 11.7 EasyMile SAS
  • 11.8 El Dorado National
  • 11.9 Gillig LLC
  • 11.10 Hydrogenics Corporation
  • 11.11 Hyundai Motor Company
  • 11.12 Iveco S.p.A.
  • 11.13 New Flyer Industries Inc.
  • 11.14 Proterra Inc.
  • 11.15 Riversimple Engineering Limited
  • 11.16 Solaris Bus & Coach S.A.
  • 11.17 Tevva Motors Ltd.
  • 11.18 Toyota Motor Corporation
  • 11.19 Van Hool NV
  • 11.20 Wrightbus International Limited